Reducibility theorems for differentiable liftings in fiber bundles
Archivum mathematicum, Tome 15 (1979) no. 2, pp. 93-106 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 55R10, 58A20, 58C25, 58K99
@article{ARM_1979_15_2_a2,
     author = {Krupka, Demeter},
     title = {Reducibility theorems for differentiable liftings in fiber bundles},
     journal = {Archivum mathematicum},
     pages = {93--106},
     year = {1979},
     volume = {15},
     number = {2},
     mrnumber = {563142},
     zbl = {0439.55009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a2/}
}
TY  - JOUR
AU  - Krupka, Demeter
TI  - Reducibility theorems for differentiable liftings in fiber bundles
JO  - Archivum mathematicum
PY  - 1979
SP  - 93
EP  - 106
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a2/
LA  - en
ID  - ARM_1979_15_2_a2
ER  - 
%0 Journal Article
%A Krupka, Demeter
%T Reducibility theorems for differentiable liftings in fiber bundles
%J Archivum mathematicum
%D 1979
%P 93-106
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a2/
%G en
%F ARM_1979_15_2_a2
Krupka, Demeter. Reducibility theorems for differentiable liftings in fiber bundles. Archivum mathematicum, Tome 15 (1979) no. 2, pp. 93-106. http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a2/

[1] G. W. Horndeski D. Lovelock: Scalar-tensor field theories. Tensor, 24 (1972), 79-92. | MR

[2] D. Husemoller: Fibre Bundles. McGraw-Hill, New York, 1966. | MR | Zbl

[3] Chuu-Lian Terng: Natural vector bundles and natural differential operators. A dissertation, Brandeis University, Massachusetts, 1976.

[4] S. Kobayashi K. Nomizu: Foundations of Differential Geometry. Vol. 1, Interscience, New York, 1963. | MR

[5] D. Krupka: A setting for generally invariant Lagrangian structures in tensor bundles. Bull. Acad. Polon. Sci, Sér. Math. Astronom. Phys., 22 (1974), 967-972. | MR | Zbl

[6] D. Krupka: A theory of generally invariant Lagrangians for the metric fields. II. Intern. J. Theor. Phys. 15 (1976), 949-959; I., Intern. J. Theor. Phys. 17 (1978), 359-368 | MR

[7] D. Krupka: Elementary theory of differential invariants. Arch. Math. (Brno), 14 (1978), 207-214 | MR | Zbl

[8] D. Krupka: Finite order liftings in principal fibre bundles. Beiträge zur Algebra und Geometrie (Halle), to appear. | MR | Zbl

[9] D. Krupka: Lagrangians and topology. Scripta Fac. Sci. Nat. UJEP Brunensis, Physica 3- 4 (1975), 265-270. | MR

[10] D. Krupka A. Trautman: General invariance of Lagrangian structures. Bull. Acad. Polon. Sci, Sér. Math. Astronom. Phys., 22 (1974), 207-211. | MR

[11] A. Nijenhuis: Natural bundles and their general properties. Differential geometry, in honour of K. Yano, Kinokunyia, Tokyo, 1972, 317-334. | MR | Zbl

[12] H. Rund: Invariant theory of variational problems for geometric objects. Tensor, 18 (1967), 240-257. | MR | Zbl

[13] S. E. Salvioli: On the theory of geometric objects. J. Diff. Geometry 7 (1972), 257-278. | MR | Zbl

[14] R. Sulanke P. Wintgen: Differentialgeometrie und Faserbündel. Berlin, 1972. | MR