On an oscillation criterion of Hartman, Wintner and Potter
Archivum mathematicum, Tome 15 (1979) no. 2, pp. 81-91 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10
@article{ARM_1979_15_2_a1,
     author = {Heil, Erhard},
     title = {On an oscillation criterion of {Hartman,} {Wintner} and {Potter}},
     journal = {Archivum mathematicum},
     pages = {81--91},
     year = {1979},
     volume = {15},
     number = {2},
     mrnumber = {563141},
     zbl = {0378.34026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a1/}
}
TY  - JOUR
AU  - Heil, Erhard
TI  - On an oscillation criterion of Hartman, Wintner and Potter
JO  - Archivum mathematicum
PY  - 1979
SP  - 81
EP  - 91
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a1/
LA  - en
ID  - ARM_1979_15_2_a1
ER  - 
%0 Journal Article
%A Heil, Erhard
%T On an oscillation criterion of Hartman, Wintner and Potter
%J Archivum mathematicum
%D 1979
%P 81-91
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a1/
%G en
%F ARM_1979_15_2_a1
Heil, Erhard. On an oscillation criterion of Hartman, Wintner and Potter. Archivum mathematicum, Tome 15 (1979) no. 2, pp. 81-91. http://geodesic.mathdoc.fr/item/ARM_1979_15_2_a1/

[1] Breuer S., Gottlieb D.: Separation of roots and oscillation in ordinary linear differential equations of second order. Proc. Amer. Math. Soc. 29 (1971), 487-493. | MR | Zbl

[2] Caratheodory C.: Vorlesungen über reelle Funktionen. 2. Aufl. Teubner Leipzig 1927.

[3] Etgen G. J., Pawlowski J. F.: Oscillation criteria for second order self adjoint differential systems. Pacific J. Math. 66 (1976) 99-110. | MR | Zbl

[4] Fite W. B.: Concerning the zeros of the solutions of certain differential equations. Trans. Amer. Math. Soc. 19 (1917), 341-352. | MR

[5] Gagliardo E.: Sul comportamento asintotico degli integrali dell'equazione differenziale $y" + A(x) y =0$ con $A(x) \geq 0$. Boll. Unione Mat. Ital. (3) 8 (1953), 177-185. | MR

[6] Guggenheimer H.: Hill equations with coexisting periodic solutions. J. Diff. Equations 5 (1969), 159-166. | MR | Zbl

[7] Hartman P., Wintner A.: On non-conservative linear oscillators of low frequency. Amer. J. Math. 70 (1948), 529-539. | MR | Zbl

[8] Kreith K.: Oscillation theory. Lecture Notes in Math. 324, Springer-Verlag Berlin, Heidelberg, New York 1973. | Zbl

[9] Laugwitz D.: Differentialgeometrie in Vektorräumen. Vieweg Braunschweig 1965. | MR | Zbl

[10] Leighton W.: Principal quadratic functionals and self adjoint second-order differential equations. Proc. Nat. Acad. Sci. 35 (1949) 192-193. | MR | Zbl

[11] Leighton W.: On self adjoint differential equations of second order. J. London Math. Soc. 27 (1952), 37-47. | MR | Zbl

[12] Moore R. A.: The behavior of solutions of a linear differential equation of second order. Pacific J. Math. 5 (1955), 125-145. | MR

[13] Neuman F.: Centroaffine invariants of plane curves in connection with the theory of the second order linear differential equations. Archivum Math. (Brno) 4 (1968), 201-216. | MR | Zbl

[14] Opial Z.: Sur une critère d'oscillation des integrales de l'equation différentielle $(Q(t) x')' + f(t)x = 0$. Ann. Polon. Math. 6 (1959/1960), 99-104. | MR

[15] Pfaff R.: Zur Theorie der gewöhnlichen linearen Differentialgleichung zweiter Ordnung mit Distributionskoeffizient. Dissertation Darmstadt 1978. | MR

[16] Potter R. L.: On self-adjoint differential equations of second order. Pacific J. Math. 3 (1953),. 467-491. | MR | Zbl

[17] Ráb M.: Kriterien für die Oszillation der Lösungen der Differentialgleichung $[p(x)y']' + q(x)y = 0$. Časopis Pěst. Mat. 84 (1959), 335-370. | MR

[18] Swanson C. A.: Comparison and oscillation theory of linear differential equations. Academic Press New York, London 1968. | MR | Zbl

[19] Willet D.: Classification of second order linear differential equations with respect to oscillation. In: Lectures on ordinary differential equations. Ed. R. McKelvey, Academic Press New York, London 1970. | MR

[20] Wintner A.: A criterion of oscillatory stability. Quarterly Appl. Math. 7 (1949), 115-117. | MR | Zbl