On topologies convexly compatible with the ordering
Archivum mathematicum, Tome 15 (1979) no. 1, pp. 13-18 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06B30, 54F05
@article{ARM_1979_15_1_a1,
     author = {Lihov\'a, Judita},
     title = {On topologies convexly compatible with the ordering},
     journal = {Archivum mathematicum},
     pages = {13--18},
     year = {1979},
     volume = {15},
     number = {1},
     mrnumber = {562107},
     zbl = {0435.54027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1979_15_1_a1/}
}
TY  - JOUR
AU  - Lihová, Judita
TI  - On topologies convexly compatible with the ordering
JO  - Archivum mathematicum
PY  - 1979
SP  - 13
EP  - 18
VL  - 15
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1979_15_1_a1/
LA  - en
ID  - ARM_1979_15_1_a1
ER  - 
%0 Journal Article
%A Lihová, Judita
%T On topologies convexly compatible with the ordering
%J Archivum mathematicum
%D 1979
%P 13-18
%V 15
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1979_15_1_a1/
%G en
%F ARM_1979_15_1_a1
Lihová, Judita. On topologies convexly compatible with the ordering. Archivum mathematicum, Tome 15 (1979) no. 1, pp. 13-18. http://geodesic.mathdoc.fr/item/ARM_1979_15_1_a1/

[1] D. Adnadevič: Saglasnost topologiji sa uredenjem. Matematički vesnik 7 (1970), 109-112. | MR

[2] D. Adnadevič: Topologija i porjadok. DAM 206, No 6 (1972), 1273-1276. | MR

[3] G. Birkhoff: A new interval toþology for dually directed sets. Univ. Nac. Tucurnan. Rev. Ser. A 14 (1962), 325-331. | MR

[4] G. Birkhoff: Lattice Theory. Third Edition, New York, American Math. Soc., 1967. | MR | Zbl

[5] Mc Caгtan: Separation axioms for topological ordered spaces. Proc. Camb. Phil. Soc. 64 (1968), 965-973. | MR

[6] D. Cvetkovič: The number of antichains of finite power sets. Publ. de L'Institut Mathematique 13/27 (1972), 5-9. | MR

[7] E. Čech: Topological papers. Pгaha 1968, 436-472.

[8] O. Frink: Topology in lattices. Tr. A. M. S. 51 (1942), 569-582. | MR | Zbl

[9] J. Chvalina: On the number of general topologies on a finite set. Scripta Fac. Sci. Nat. UJEP Brunensis, M 1, 3 (1973), 7-22. | MR | Zbl

[10] M. Kolibiar: Bemerkungen über Intervalltopologie in halbgeordneten Mengen. Gen. Topology and its Relations to Modern Analysis and Algebra, Pгague (1962), 252-253. | MR | Zbl

[11] A., M. Sekanina: Topologies compatible with ordering. Aгchivum Math. 2 (1966), 113-126. | MR | Zbl

[12] E. S. Wolk: Order-compatible topologies on a partially ordered set. Proc. Am. M. S. 9 (1958), 524-529. | MR | Zbl