On the structure of second-order linear differential equations with given characteristic multipliers in the generalized Floquet theory
Archivum mathematicum, Tome 14 (1978) no. 4, pp. 235-242 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10, 34C99
@article{ARM_1978_14_4_a9,
     author = {Stan\v{e}k, Svatoslav},
     title = {On the structure of second-order linear differential equations with given characteristic multipliers in the generalized {Floquet} theory},
     journal = {Archivum mathematicum},
     pages = {235--242},
     year = {1978},
     volume = {14},
     number = {4},
     mrnumber = {512767},
     zbl = {0423.34044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1978_14_4_a9/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - On the structure of second-order linear differential equations with given characteristic multipliers in the generalized Floquet theory
JO  - Archivum mathematicum
PY  - 1978
SP  - 235
EP  - 242
VL  - 14
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ARM_1978_14_4_a9/
LA  - en
ID  - ARM_1978_14_4_a9
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T On the structure of second-order linear differential equations with given characteristic multipliers in the generalized Floquet theory
%J Archivum mathematicum
%D 1978
%P 235-242
%V 14
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1978_14_4_a9/
%G en
%F ARM_1978_14_4_a9
Staněk, Svatoslav. On the structure of second-order linear differential equations with given characteristic multipliers in the generalized Floquet theory. Archivum mathematicum, Tome 14 (1978) no. 4, pp. 235-242. http://geodesic.mathdoc.fr/item/ARM_1978_14_4_a9/

[1] O. Borůvka: Linear Differential Transformations of the Second Order. The English Universities Press, London, 1971. | MR

[2] Бopyвкa O.: Teopuя глoбaльныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaлъnыx ypaвнeнuй вmopoгo nopядкa. Диффepeнциaльныe ypaвнeния, Ho 8, т. XII, 1976, 1347-1383.

[3] O. Borůvka: On central dispersions of the differential equation y" = q(t) y with periodic coefficients. Lecture Notes in Mathematics, 415, Proceedings of the Conference held at Dundee, Scotland, 26-29, March, 1974, 47-60. | MR

[4] O. Borůvka: Sur les blocs des équations différentielles y" = q(t) y aux coefficients périodiques. Rend. Mat. (2), 8, S. VI, 1975, 519-532. | MR

[5] O. Borůvka: Sur quelques compléments à la théorie de Floquet pour les équations différentielles du deuxième ordre. Ann. mat. p. ed appl. S. IV, CII, 1975, 71-77. | MR

[6] Лaйтox M.: Pacшupeнue мemoòa Флoкe для onpeдeлeнuя вuдa фyндaмeнmaльнoй cucmeмы peшeнuй дuффepeнцuaльнoгo ypaвнeнuя вmopoгo nopядкa y" = q(t)y. Чex мaт. жypнaл, т. 5 (80), 1955, 164-173.

[7] W. Magnus, S. Winkler: Hill's Equation. Interscience Publishers New York, 1966. | MR | Zbl

[8] F. Neuman: Note on bounded non-periodic solutions of the second-order linear differential equations with periodic coefficients. Mat. Nachrichten, 39, 1969, 217-222. | MR

[9] F. Neuman, S. Staněk: On the structure of second-order periodic differential equations with given characteristic multipliers. Arch. Math. (Brno), 3, XIII (1977), 149-157. | MR

[10] S. Staněk: Phase and dispersion theory of the differential equation y" = q(t)y in connection with the generalized Floquet theory. Arch. Math. | Zbl