An embedding problem and its application in linguistics
Archivum mathematicum, Tome 14 (1978) no. 3, pp. 123-137
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06A06, 06A15, 06B23, 68Q45
@article{ARM_1978_14_3_a0,
     author = {Dal{\'\i}k, Josef},
     title = {An embedding problem and its application in linguistics},
     journal = {Archivum mathematicum},
     pages = {123--137},
     year = {1978},
     volume = {14},
     number = {3},
     mrnumber = {0521193},
     zbl = {0398.68029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1978_14_3_a0/}
}
TY  - JOUR
AU  - Dalík, Josef
TI  - An embedding problem and its application in linguistics
JO  - Archivum mathematicum
PY  - 1978
SP  - 123
EP  - 137
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ARM_1978_14_3_a0/
LA  - en
ID  - ARM_1978_14_3_a0
ER  - 
%0 Journal Article
%A Dalík, Josef
%T An embedding problem and its application in linguistics
%J Archivum mathematicum
%D 1978
%P 123-137
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/ARM_1978_14_3_a0/
%G en
%F ARM_1978_14_3_a0
Dalík, Josef. An embedding problem and its application in linguistics. Archivum mathematicum, Tome 14 (1978) no. 3, pp. 123-137. http://geodesic.mathdoc.fr/item/ARM_1978_14_3_a0/

[1] L. Beran: Grupy a svazy. (Zúplnění svazů). SNTL, 1974. | MR | Zbl

[2] F. Hauѕdorff: Mengenlehre. Leiрzig, 1927, 55-71.

[3] G. Száѕz: Einführung in die Verbandstheorie. Verlag der Ungariѕchen Akademie der Wiѕѕenѕchaften, Budapeѕt, 1962.

[4] J. Dalík: Verbandstheoretische Eigenschaften von Sprachen. I, II, Arch. Math. Faѕc. 1, Tom XII, 1976; Faѕc. 1, Tom XIII, 1977. | MR

[5] N. Funaуama: Imbedding partly ordered sets into infinitely distributive complete lattices. Tohoku Math. Journal 8, N1 (1956), 54-62. | MR

[6] J. Kunze: Versuch eines objektivierten Grammatikmodells. I, II, Z. Phonetik Sprachwiѕѕ. Komunikat. 20 (1967), 21 (1968). | MR

[7] G. B. Robiѕon, E. S. Wolk: The imbedding operators on a partially ordered set. Proc. Amer. Math. Soc. 8 (1957), 551-559. | MR