Phase and dispersion theory of the differential equation $y''=q(t)y$ in connection with the generalized Floquet theory
Archivum mathematicum, Tome 14 (1978) no. 2, pp. 109-122 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C20, 34C25
@article{ARM_1978_14_2_a4,
     author = {Stan\v{e}k, Svatoslav},
     title = {Phase and dispersion theory of the differential equation $y''=q(t)y$ in connection with the generalized {Floquet} theory},
     journal = {Archivum mathematicum},
     pages = {109--122},
     year = {1978},
     volume = {14},
     number = {2},
     mrnumber = {512750},
     zbl = {0412.34025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1978_14_2_a4/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - Phase and dispersion theory of the differential equation $y''=q(t)y$ in connection with the generalized Floquet theory
JO  - Archivum mathematicum
PY  - 1978
SP  - 109
EP  - 122
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1978_14_2_a4/
LA  - en
ID  - ARM_1978_14_2_a4
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T Phase and dispersion theory of the differential equation $y''=q(t)y$ in connection with the generalized Floquet theory
%J Archivum mathematicum
%D 1978
%P 109-122
%V 14
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1978_14_2_a4/
%G en
%F ARM_1978_14_2_a4
Staněk, Svatoslav. Phase and dispersion theory of the differential equation $y''=q(t)y$ in connection with the generalized Floquet theory. Archivum mathematicum, Tome 14 (1978) no. 2, pp. 109-122. http://geodesic.mathdoc.fr/item/ARM_1978_14_2_a4/

[1] Borůvka O.: Linear Differential Transformations of the Second Order. The English Universities Press, London 1971. | MR

[2] Borůvka O.: On central dispersions of the differential equation y" = q(t)y with periodic coefficients. Lecture Notes in Mаthemаtics, 415, Proceedings of the Conference held аt Dundee, Scotlаnd, 26-29, Mаrch, 1974, 47-60. | MR

[3] Borůvkа O.: Sur les blocs des équations différentielles y" = q(t)y aux coefficients périodiques. Rend. Mаt. (2), 8, Ѕ. VI, 1975, 519-532. | MR

[4] Bоrůvkа O.: Sur quelques compléments á la théorie de Ғloquet pour les équations différentielles du deuxième ordre. Ann. mаt. p. ed аppl. Ѕ. IV, CII, 1975, 71-77.

[5] Боpувка O.: Teopuя глoбaльныx cвoйcmв oбыкнoвeнныx лuнeйныx дuффepeнцuaльныx ypaвнeнuй вmopoгo нopядкa. Диффepeнциальныe уpавнeния, Hо 8, т. ХII, 1976, 1347-1383.

[6] Лайтоx M.: Pacшupeнue мemoдa Флoкe для onpeдeлeнuя вuдa фyндaмeнmaльнoй cucmeмы peшeнuй дuффepeнцuaлънoгo ypaвнeнuя вmopoгo nopядкa y" = q(t)y. Чex. мат. жуpнал, T. 5 (80), 1955, 164-173.

[7] Mаgnuѕ W. аnd Winkler Ѕ.: Hill's Equation. Interѕсienсe Publiѕherѕ New Yоrk, 1966.

[8] Neumаn F.: Note on bounded non-periodic solutions of second-order linear differential equations with periodic coefficients. Mаth. Nасhr. 39, 1969, 217-222. | MR