On the existence and boundedness of solutions of a nonlinear delay differential system
Archivum mathematicum, Tome 14 (1978) no. 1, pp. 13-20 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A12, 34C11, 34K05, 34K99
@article{ARM_1978_14_1_a1,
     author = {Fut\'ak, J\'an},
     title = {On the existence and boundedness of solutions of a nonlinear delay differential system},
     journal = {Archivum mathematicum},
     pages = {13--20},
     year = {1978},
     volume = {14},
     number = {1},
     mrnumber = {512741},
     zbl = {0392.34042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1978_14_1_a1/}
}
TY  - JOUR
AU  - Futák, Ján
TI  - On the existence and boundedness of solutions of a nonlinear delay differential system
JO  - Archivum mathematicum
PY  - 1978
SP  - 13
EP  - 20
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ARM_1978_14_1_a1/
LA  - en
ID  - ARM_1978_14_1_a1
ER  - 
%0 Journal Article
%A Futák, Ján
%T On the existence and boundedness of solutions of a nonlinear delay differential system
%J Archivum mathematicum
%D 1978
%P 13-20
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/ARM_1978_14_1_a1/
%G en
%F ARM_1978_14_1_a1
Futák, Ján. On the existence and boundedness of solutions of a nonlinear delay differential system. Archivum mathematicum, Tome 14 (1978) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/ARM_1978_14_1_a1/

[1] Futák Ј.: Über die Beschränktheit und die Existenz der Lösungen der Differentialgleichung 4. Ordnung mit nacheilendem Argument. Acta Univ. Palac. Olomucensis, Fac. R. Nat. (to apper).

[2] Futák Ј.: An existence and boundedness of solutions of a nonlinear differential equation of the n-th order with delay. Práce a štúdie VŠD, č. 3, (to appear).

[3] Futák Ј.: On the existence of solutions of the n-th order nonlinear differential equation with delay. Časopis pro pěs. mat. (to appear).

[4] Hallam T. G.: Asymptotic relationships between the solutions of two second order dìfferential equations. Annal. Polonici Math., 24, 1971, p. 295-300. | MR | Zbl

[5] Marušiak P.: Differenciaľnoje uravnenije s zapazdyvajusčim argumentom, asimptotičeski ekvivalentnoje s uravnenijem $y^{(n) }= 0$. Mat. časop. 23, 1973, No. L, p. 45-54. | MR

[6] Norkin S. B.: Diferenciaľnyje uravnenija vtorovo porjadka s zapazdyvajuščim argumentom. Moskva 1965.

[7] Ráb M.: Bounds for solutions of the equation $[p(t)x']' + q(t)x = h(t, x, x')$. Arch. Math. 2. 9, 1975, p. 79-84. | MR