@article{ARM_1976_12_2_a5,
author = {Krupka, Demeter},
title = {On a class of variational problems defined by polynomial {Lagrangians}},
journal = {Archivum mathematicum},
pages = {99--105},
year = {1976},
volume = {12},
number = {2},
mrnumber = {0426039},
zbl = {0386.49028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1976_12_2_a5/}
}
Krupka, Demeter. On a class of variational problems defined by polynomial Lagrangians. Archivum mathematicum, Tome 12 (1976) no. 2, pp. 99-105. http://geodesic.mathdoc.fr/item/ARM_1976_12_2_a5/
[1] R. Hermann: Differential geometry and the calculus of variations. New York (1968). | MR | Zbl
[2] R. Hermann: Geometry, physics and systems. New York (1973). | MR | Zbl
[3] D. Krupka: Lagrange theory in fibred manifolds. Rep. Math. Phys. 2 (1971), 121-133. | MR
[4] D. Krupka: On generalized invariant transformations. Rep. Math. Phys. 5 (1974), 355-360. | MR | Zbl
[5] D. Krupka: A geometric theory of ordinary first order variational problems in fibered manifold. I. Critical sections. J. Math. Anal. Appl. 49 (1975), 180-206. | MR
[6] Th. H. J. Lepage: Sur les champs géodésiques du Calcul des Variations. Bull. Acad. Roy. Belg., Cl. Sci. V, Sér. 22 (1936), 716, 1036. | Zbl
[7] R. S. Palais: Manifolds of sections of fiber bundles and the calculus of variations. in "Nonlinear Functional Analysis," Proc Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, III., 1968, pp. 195-205, Providence RI, 1970. | MR
[8] J. Śniatycki: On the geometric structure of classical field theory in Lagrangian formulation. Proc. Camb. Phil. Soc. (1970), 68, 475-484. | MR
[9] A. Trautman: Invariance of Lagrangian systems. in "General Relativity", papers in honour of J. L. Synge, Oxford (1972). | MR | Zbl