On asymptotic properties of central dispersions of the $k$-th kind of $y''=q(t)y$, $k=1,2,3,4$
Archivum mathematicum, Tome 12 (1976) no. 2, pp. 87-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34A12, 34C10
@article{ARM_1976_12_2_a4,
     author = {Stan\v{e}k, Svatoslav},
     title = {On asymptotic properties of central dispersions of the $k$-th kind of $y''=q(t)y$, $k=1,2,3,4$},
     journal = {Archivum mathematicum},
     pages = {87--98},
     year = {1976},
     volume = {12},
     number = {2},
     mrnumber = {0427745},
     zbl = {0355.34020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1976_12_2_a4/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - On asymptotic properties of central dispersions of the $k$-th kind of $y''=q(t)y$, $k=1,2,3,4$
JO  - Archivum mathematicum
PY  - 1976
SP  - 87
EP  - 98
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1976_12_2_a4/
LA  - en
ID  - ARM_1976_12_2_a4
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T On asymptotic properties of central dispersions of the $k$-th kind of $y''=q(t)y$, $k=1,2,3,4$
%J Archivum mathematicum
%D 1976
%P 87-98
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1976_12_2_a4/
%G en
%F ARM_1976_12_2_a4
Staněk, Svatoslav. On asymptotic properties of central dispersions of the $k$-th kind of $y''=q(t)y$, $k=1,2,3,4$. Archivum mathematicum, Tome 12 (1976) no. 2, pp. 87-98. http://geodesic.mathdoc.fr/item/ARM_1976_12_2_a4/

[1] O. Borůvka: Linear Differential Transformations of the Second Order. The English Universities Press Ltd., London 197L | MR

[2] P. Hartman: Ordinary differential equations. (in Russian), Moscow 1970. | Zbl

[3] K. S. Miller: Linear Differential Equations in the Real Domain. New York, W. W. Norton Company, 1963. | MR

[4] S. Staněk: Asymptotic properties of the dispersions of the differential equations y" = q(t)y. Arch. Math. 2 (Brno), XI (1975), 85-98. | MR

[5] C. A. Swanson: Comparison and Oscillation Theory of Linear Differential Equations. Academic Press New York and London 1968. | MR | Zbl