On a coincidence of central dispersions of the first and second kind in connection with periodic solutions of the differential equation $y'=q(t)y$
Archivum mathematicum, Tome 11 (1975) no. 4, pp. 205-216
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{ARM_1975_11_4_a2,
author = {Rach\r{u}nkov\'a, Irena},
title = {On a coincidence of central dispersions of the first and second kind in connection with periodic solutions of the differential equation $y'=q(t)y$},
journal = {Archivum mathematicum},
pages = {205--216},
year = {1975},
volume = {11},
number = {4},
mrnumber = {0407390},
zbl = {0348.34009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1975_11_4_a2/}
}
TY - JOUR AU - Rachůnková, Irena TI - On a coincidence of central dispersions of the first and second kind in connection with periodic solutions of the differential equation $y'=q(t)y$ JO - Archivum mathematicum PY - 1975 SP - 205 EP - 216 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_1975_11_4_a2/ LA - en ID - ARM_1975_11_4_a2 ER -
%0 Journal Article %A Rachůnková, Irena %T On a coincidence of central dispersions of the first and second kind in connection with periodic solutions of the differential equation $y'=q(t)y$ %J Archivum mathematicum %D 1975 %P 205-216 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/ARM_1975_11_4_a2/ %G en %F ARM_1975_11_4_a2
Rachůnková, Irena. On a coincidence of central dispersions of the first and second kind in connection with periodic solutions of the differential equation $y'=q(t)y$. Archivum mathematicum, Tome 11 (1975) no. 4, pp. 205-216. http://geodesic.mathdoc.fr/item/ARM_1975_11_4_a2/
[1] Borůvka O.: Lineare Differentialtransformationen 2. Ordnung. DVW, Berlin 1967.
[2] Neuman F.: Linear differential equations of the second order and their applications. Rend. di Mat., vol. 4, ser. VI (1971), 559-617. | MR | Zbl
[3] Laitoch M.: Sovpadenije centraľnych dispersij 1-go i 2-go roda, sootvetstvujuščich differenciaľnomu uravněniju vtorogo porjadka $y" = Q(x) y$. Czech. Math. J. 6 (81) (1956), 365-380. | MR