Asymptotic properties of dispersions of the differential equations $y''=q(t)y$
Archivum mathematicum, Tome 11 (1975) no. 2, pp. 85-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34C10, 34D05
@article{ARM_1975_11_2_a2,
     author = {Stan\v{e}k, Svatoslav},
     title = {Asymptotic properties of dispersions of the differential equations $y''=q(t)y$},
     journal = {Archivum mathematicum},
     pages = {85--98},
     year = {1975},
     volume = {11},
     number = {2},
     mrnumber = {0407379},
     zbl = {0355.34019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1975_11_2_a2/}
}
TY  - JOUR
AU  - Staněk, Svatoslav
TI  - Asymptotic properties of dispersions of the differential equations $y''=q(t)y$
JO  - Archivum mathematicum
PY  - 1975
SP  - 85
EP  - 98
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1975_11_2_a2/
LA  - en
ID  - ARM_1975_11_2_a2
ER  - 
%0 Journal Article
%A Staněk, Svatoslav
%T Asymptotic properties of dispersions of the differential equations $y''=q(t)y$
%J Archivum mathematicum
%D 1975
%P 85-98
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1975_11_2_a2/
%G en
%F ARM_1975_11_2_a2
Staněk, Svatoslav. Asymptotic properties of dispersions of the differential equations $y''=q(t)y$. Archivum mathematicum, Tome 11 (1975) no. 2, pp. 85-98. http://geodesic.mathdoc.fr/item/ARM_1975_11_2_a2/

[1] Borůvka O.: Lineare Differentialtransformationen 2. Ordnung. VEB Berlin 1967.

[2] Baгtušek M.: On asymptotic properties and distribution of zeros of solution of y" = q(t)y. (to appear).

[3] Baгtušek M.: On asymptotic behaviour of central dispersions of linear differential equations of the second order. Čas. Pěst. Mat. 100 (1975), 255-260. | MR

[4] Cesari L.: Asymptotic behaviour and stability problems in ordinary differential equations. Russian translation, Moscow 1967.

[5] Neuman F.: Relation between the distribution of the zeros of the solution of a 2nd order linear differential equation and the boundedness of these solutions. Acta Math. Hung. 19 (1968), 1--6. | MR