@article{ARM_1974_10_2_a2,
author = {Vosmansk\'y, Jarom{\'\i}r},
title = {Certain higher monotonicity properties of $i$-th derivatives of solutions of $y''+a(t)y'+b(t)y=0$},
journal = {Archivum mathematicum},
pages = {87--102},
year = {1974},
volume = {10},
number = {2},
mrnumber = {0399578},
zbl = {0318.34048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1974_10_2_a2/}
}
Vosmanský, Jaromír. Certain higher monotonicity properties of $i$-th derivatives of solutions of $y''+a(t)y'+b(t)y=0$. Archivum mathematicum, Tome 10 (1974) no. 2, pp. 87-102. http://geodesic.mathdoc.fr/item/ARM_1974_10_2_a2/
[1] Borůvka O.: Lineare Differentialtransformationen 2. Ordnung. Berlin 1967.
[2] Hartman P.: On differential equations and the function $J^2 + Y^2$. Amer. J. Math. 83 (1961), 154-188. | MR
[3] Lorch L., Szegö P.: Higher monotonicity properties of certain Sturm-Liouville functions. Acta Math. 109 (1963), 55-73. | MR
[4] Lorch L., Szegö P.: Higher monotonicity properties of certain Sturm-Liouville functions. II. Bull. Acad. Polon. Sci. Ser. Sci. Math., Astronom. Phys. 11 (1963), 455-457. | MR
[5] Lorch L., Szegö P., Muldoon M. E.: Higher monotonicity properties of certain Sturm-Liouville functions III. The Canadian Journal of Math. XXII (1970), 1238-1265. | MR
[6] Lorch L., Szegö P., Muldoon M. E.: Higher monotonicity properties of certain Sturm-Louville functions IV. The Canadian Journal of Math. XXIV (1972) 349-368. | MR
[7] Muldoon M. E.: Extension of a result of L. Lorch and P. Szegö on higher monotonicity. Canad. Math. Bull. 11. (1968), 447-451. | MR
[8] Muldoon M. E.: Elementary remarks on multiply monotonic function and sequences. Can. Math. Bull. 14 (1971), 69-72. | MR
[9] Vosmanský J.: The monotonicity of extremants of integrals of the differential equation y" + q(t)y = 0. Arch. Math. 2 (1966), 105-111. | MR
[10] Vosmanský J.: Monotonic properties of zeros and extremants of the differential equation y'' + q(t)y = 0. Arch. Math, 6 (1970), 37-73. | MR | Zbl
[11] Vosmanský J.: Some higher monotonic properties of Bessel functions. (to appear).