@article{ARM_1968_4_4_a3,
author = {\v{D}urikovi\v{c}, Vladim{\'\i}r},
title = {On the uniqueness of solutions and the convergence of successive approximations in the {Darboux} problem for certain differential equations of the type $u_{xy}=f(x,y,u,u_x,u_y)$},
journal = {Archivum mathematicum},
pages = {223--235},
year = {1968},
volume = {4},
number = {4},
mrnumber = {0262644},
zbl = {0208.12901},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1968_4_4_a3/}
}
TY - JOUR
AU - Ďurikovič, Vladimír
TI - On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem for certain differential equations of the type $u_{xy}=f(x,y,u,u_x,u_y)$
JO - Archivum mathematicum
PY - 1968
SP - 223
EP - 235
VL - 4
IS - 4
UR - http://geodesic.mathdoc.fr/item/ARM_1968_4_4_a3/
LA - en
ID - ARM_1968_4_4_a3
ER -
%0 Journal Article
%A Ďurikovič, Vladimír
%T On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem for certain differential equations of the type $u_{xy}=f(x,y,u,u_x,u_y)$
%J Archivum mathematicum
%D 1968
%P 223-235
%V 4
%N 4
%U http://geodesic.mathdoc.fr/item/ARM_1968_4_4_a3/
%G en
%F ARM_1968_4_4_a3
Ďurikovič, Vladimír. On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem for certain differential equations of the type $u_{xy}=f(x,y,u,u_x,u_y)$. Archivum mathematicum, Tome 4 (1968) no. 4, pp. 223-235. http://geodesic.mathdoc.fr/item/ARM_1968_4_4_a3/
[1] Kampen van E. R.: Notes on systems of ordinary differential equations. American Journal of Math. 63 (1941), pp. 371-376. | MR
[2] Luxemburg W. A. J.: On the convergence of successive approximations in the theory of ordinary differential equations II. Indag. Math. 20 (1958), pp. 540-546. | MR | Zbl
[3] Luxemburg W. A. J.: On the convergence of successive approximations in the theory of ordinary differential equations III. Nieuw Archief voor Wiskunde (3), VI (1958), pp. 93-98. | MR | Zbl
[4] Palczewski B.: On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem under the conditions of the Krasnosilski and Krein type. Ann. polon. Math. 14 (1964), pp. 183-190. | MR
[5] Ф. Tpикоми: Лекции пo ypaвнениям в частых производных. Mocквa 1957, pp 205-216.
[6] Wong J. S. W.: On the convergence of successive approximations in the Darboux problem. Ann. Polon. Math. XVII (1966), pp. 329-336. | MR | Zbl
[7] Wong J. S. W.: Remarks on uniqueness theorem of solutions of the Darboux problem. Canad. Math. Bull. 8 (1965), pp. 791-796. | MR