@article{ARM_1968_4_4_a1,
author = {Neuman, Franti\v{s}ek},
title = {Centroaffine invariants of plane curves in connection with the theory of the second-order linear differential equations},
journal = {Archivum mathematicum},
pages = {201--216},
year = {1968},
volume = {4},
number = {4},
mrnumber = {0267512},
zbl = {0218.34007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1968_4_4_a1/}
}
TY - JOUR AU - Neuman, František TI - Centroaffine invariants of plane curves in connection with the theory of the second-order linear differential equations JO - Archivum mathematicum PY - 1968 SP - 201 EP - 216 VL - 4 IS - 4 UR - http://geodesic.mathdoc.fr/item/ARM_1968_4_4_a1/ LA - en ID - ARM_1968_4_4_a1 ER -
Neuman, František. Centroaffine invariants of plane curves in connection with the theory of the second-order linear differential equations. Archivum mathematicum, Tome 4 (1968) no. 4, pp. 201-216. http://geodesic.mathdoc.fr/item/ARM_1968_4_4_a1/
[1] Blaschke W.: Vorlesungen über Differentialgeometrie II. Springer, Berlin 1923.
[2] Borůvka O.: Sur quelques applications des dispersions centrales dans la théorie des equations différentielles linéaires du deuxième ordre. Archivum mathematicum (Brno), T. 1 (1965), 1-20. | MR
[3] Borůvka O.: Lineare Differentialtransformationen 2. Ordnung. VEB Berlin, 1967.
[4] Cesari L.: Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. MIR, Moscow 1964. | MR | Zbl
[5] Neuman F.: Sur les équations differentielles linéaires oscillatoires du deuxième ordre avec la dispersion fondamentale $\varphi (t) = t + \pi$. Buletinul Inst. Polit. (Iaşi), T. X (XIV), (1964), 37-42. | MR | Zbl
[6] Neuman F.: Criterion of Periodicity of Solutions of a Certain Differential Equation with a Periodic Coefficient. Ann. di Mat. p. ed appl. (IV), T. LXXV (1967), 385-396. | MR | Zbl
[7] Neuman F.: Extremal Property of the Equation $y" = -k^2 y$. Archivum math. (Brno), T. 3 (1967), 161-164. | MR
[8] Neuman F.: Relation between the Distribution of the Zeros of the Solutions of a 2nd Order Linear Differential Equation and the Boundedness of these Solutions. Acta Math., T. XIX (1968), p. 1-6. | MR
[9] Santaló L. A.: Introduction to Integral Geometry. Hermann, Paris 1953. | MR