Prime elements in the semigroup of finite types of partially ordered sets in cardinal multiplication
Archivum mathematicum, Tome 4 (1968) no. 2, pp. 97-101 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06A06, 20M14, 20M20
@article{ARM_1968_4_2_a2,
     author = {Skula, Ladislav},
     title = {Prime elements in the semigroup of finite types of partially ordered sets in cardinal multiplication},
     journal = {Archivum mathematicum},
     pages = {97--101},
     year = {1968},
     volume = {4},
     number = {2},
     mrnumber = {0277441},
     zbl = {0208.28904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_1968_4_2_a2/}
}
TY  - JOUR
AU  - Skula, Ladislav
TI  - Prime elements in the semigroup of finite types of partially ordered sets in cardinal multiplication
JO  - Archivum mathematicum
PY  - 1968
SP  - 97
EP  - 101
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ARM_1968_4_2_a2/
LA  - en
ID  - ARM_1968_4_2_a2
ER  - 
%0 Journal Article
%A Skula, Ladislav
%T Prime elements in the semigroup of finite types of partially ordered sets in cardinal multiplication
%J Archivum mathematicum
%D 1968
%P 97-101
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/ARM_1968_4_2_a2/
%G en
%F ARM_1968_4_2_a2
Skula, Ladislav. Prime elements in the semigroup of finite types of partially ordered sets in cardinal multiplication. Archivum mathematicum, Tome 4 (1968) no. 2, pp. 97-101. http://geodesic.mathdoc.fr/item/ARM_1968_4_2_a2/

[1] G. Birkhoff: Lattice Theory. rev. ed., New York 1948. | MR | Zbl

[2] G. Birkhoff: Generalized arithmetic. Duke Math. Journ. 9 (1942), 283-302. | MR | Zbl

[3] Bourbaki: Éléments de Mathématique, Algèbre. Livre II, Paris, Russian translation, 1965.

[4] J. Hashimoto: On direct product decomposition of partially ordered sets. Annals of Math., 54 (1951), 315-318. | MR

[5] J. Hashimoto, T. Nakayama: On a problem of G. Birkhoff. Proceedings of the American Mathematical Society, vol. 1 (1950), 141-142. | MR

[6] Š. Mikoláš: Über ein Problem aus der Kardinalarithmetik. Publ. Fac. Sci. Univ. J. E. Purkyně, Brno, Tchécoslovaquie, No 478 (1966), 427-431. | MR

[7] M. Novotný: Über Kardinalprodukte. Zeitsch. f. math. Logik und Grundlagen d. Math., Bd. 9 (1963), 13-20. | MR