@article{ARM_1967_3_4_a1,
author = {Pol\'ak, V\'aclav and Pol\'akov\'a, Nad\v{e}\v{z}da},
title = {Notes on game theory equilibria},
journal = {Archivum mathematicum},
pages = {165--176},
year = {1967},
volume = {3},
number = {4},
mrnumber = {0241128},
zbl = {0279.90054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_1967_3_4_a1/}
}
Polák, Václav; Poláková, Naděžda. Notes on game theory equilibria. Archivum mathematicum, Tome 3 (1967) no. 4, pp. 165-176. http://geodesic.mathdoc.fr/item/ARM_1967_3_4_a1/
[1] L. Danzer B. Grünbaum V. Klee. : Helly's theorem and its relatives. Proceedings of Symposia in Pure Math., Vol. VII. Convexity.
[2] M. Davis M. Maschler. : Existence of stable payoff configurations foг cooperative games. Bull. Amer. Math. Soc. 69 (1963), 106-108. | MR
[3] S. Eilenberg D. Montgomeгy. : Fixed point theorems for multi-valued transformations. Amer. J. Math. 68 (1946), 214-222. | MR
[4] S. Kakutani. : A generalization of Brouwer's fixed point theorem. Duke Math. J. Vol. 8, (1941), 457-459. | MR | Zbl
[5] S. Karlin. : Mathematical methods and theory in games, programming and economics. London-Paris 1959.
[6] S. Lefschetz. : Algebraic topology. New York 1942. | MR | Zbl
[7] J. F. Nash. : Non-cooperative games. Ann. of Math. 54 (1951), 286-295. | MR | Zbl
[8] B. Peleg. : Existence theoгem foг the bargaining set $M_1^{(i)}$. Bull. Amer. Math. Soc. 69 (1963), 109-110. | MR
[9] B. Peleg. : The independence of game theory of utility theory. Bull. Amer. Math. Soc. 72 (1966), 995-999. | MR | Zbl
[10] L. S. Shapley. : Some topics in two-person games. Ann. Math. Studies 52 (1964), 1-28. | MR | Zbl
[11] L. S. Shapley: Equilibrium points in games with vector payoffs. Naval Research Logistic Quarterly 6 (1959), 67-61. | MR