When do the Fibonacci invertible classes modulo M form a subgroup?
Annales mathematicae et informaticae, Tome 41 (2013), pp. 265-270.

Voir la notice de l'article provenant de la source Annales Mathematica et Informaticae website

@article{AMI_2013_41_a20,
     author = {Florian Luca and Pantelimon St\u{a}nic\u{a} and Aynur Yal\c{c}iner},
     title = {When do the {Fibonacci} invertible classes modulo {M} form a subgroup?},
     journal = {Annales mathematicae et informaticae},
     pages = {265--270},
     publisher = {mathdoc},
     volume = {41},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AMI_2013_41_a20/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Pantelimon Stănică
AU  - Aynur Yalçiner
TI  - When do the Fibonacci invertible classes modulo M form a subgroup?
JO  - Annales mathematicae et informaticae
PY  - 2013
SP  - 265
EP  - 270
VL  - 41
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AMI_2013_41_a20/
LA  - en
ID  - AMI_2013_41_a20
ER  - 
%0 Journal Article
%A Florian Luca
%A Pantelimon Stănică
%A Aynur Yalçiner
%T When do the Fibonacci invertible classes modulo M form a subgroup?
%J Annales mathematicae et informaticae
%D 2013
%P 265-270
%V 41
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AMI_2013_41_a20/
%G en
%F AMI_2013_41_a20
Florian Luca; Pantelimon Stănică; Aynur Yalçiner. When do the Fibonacci invertible classes modulo M form a subgroup?. Annales mathematicae et informaticae, Tome 41 (2013), pp. 265-270. http://geodesic.mathdoc.fr/item/AMI_2013_41_a20/