Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity
Annales mathematicae et informaticae, Tome 39 (2012), pp. 173-191.

Voir la notice de l'article provenant de la source Annales Mathematica et Informaticae website

@article{AMI_2012_39_a10,
     author = {S. V. Nagaev},
     title = {Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity},
     journal = {Annales mathematicae et informaticae},
     pages = {173--191},
     publisher = {mathdoc},
     volume = {39},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AMI_2012_39_a10/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity
JO  - Annales mathematicae et informaticae
PY  - 2012
SP  - 173
EP  - 191
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AMI_2012_39_a10/
LA  - en
ID  - AMI_2012_39_a10
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity
%J Annales mathematicae et informaticae
%D 2012
%P 173-191
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AMI_2012_39_a10/
%G en
%F AMI_2012_39_a10
S. V. Nagaev. Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity. Annales mathematicae et informaticae, Tome 39 (2012), pp. 173-191. http://geodesic.mathdoc.fr/item/AMI_2012_39_a10/