Voir la notice de l'article provenant de la source European Digital Mathematics Library
@article{AM2_1986__31_137165, author = {H. Fiedler}, title = {Interpolating the m-th power of x at the zeros of the n-th {Chebyshev-polynomial} yields an almost best {Chebyshev-approximation.}}, journal = {Aequationes mathematicae}, pages = {294--299}, publisher = {mathdoc}, volume = {31}, year = {1986}, zbl = {0625.41004}, url = {http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/} }
TY - JOUR AU - H. Fiedler TI - Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation. JO - Aequationes mathematicae PY - 1986 SP - 294 EP - 299 VL - 31 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/ ID - AM2_1986__31_137165 ER -
%0 Journal Article %A H. Fiedler %T Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation. %J Aequationes mathematicae %D 1986 %P 294-299 %V 31 %I mathdoc %U http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/ %F AM2_1986__31_137165
H. Fiedler. Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.. Aequationes mathematicae, Tome 31 (1986), pp. 294-299. http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/