Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
Aequationes mathematicae, Tome 31 (1986), pp. 294-299
Cet article a éte moissonné depuis la source European Digital Mathematics Library
@article{AM2_1986__31_137165,
author = {H. Fiedler},
title = {Interpolating the m-th power of x at the zeros of the n-th {Chebyshev-polynomial} yields an almost best {Chebyshev-approximation.}},
journal = {Aequationes mathematicae},
pages = {294--299},
year = {1986},
volume = {31},
zbl = {0625.41004},
url = {http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/}
}
TY - JOUR AU - H. Fiedler TI - Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation. JO - Aequationes mathematicae PY - 1986 SP - 294 EP - 299 VL - 31 UR - http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/ ID - AM2_1986__31_137165 ER -
H. Fiedler. Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.. Aequationes mathematicae, Tome 31 (1986), pp. 294-299. http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/