Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
Aequationes mathematicae, Tome 31 (1986), pp. 294-299.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Lagrange interpolant, Chebyshev polynomial
@article{AM2_1986__31_137165,
     author = {H. Fiedler},
     title = {Interpolating the m-th power of x at the zeros of the n-th {Chebyshev-polynomial} yields an almost best {Chebyshev-approximation.}},
     journal = {Aequationes mathematicae},
     pages = {294--299},
     publisher = {mathdoc},
     volume = {31},
     year = {1986},
     zbl = {0625.41004},
     url = {http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/}
}
TY  - JOUR
AU  - H. Fiedler
TI  - Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
JO  - Aequationes mathematicae
PY  - 1986
SP  - 294
EP  - 299
VL  - 31
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/
ID  - AM2_1986__31_137165
ER  - 
%0 Journal Article
%A H. Fiedler
%T Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.
%J Aequationes mathematicae
%D 1986
%P 294-299
%V 31
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/
%F AM2_1986__31_137165
H. Fiedler. Interpolating the m-th power of x at the zeros of the n-th Chebyshev-polynomial yields an almost best Chebyshev-approximation.. Aequationes mathematicae, Tome 31 (1986), pp. 294-299. http://geodesic.mathdoc.fr/item/AM2_1986__31_137165/