Boundedness on a Set of Positive Measure and the Mean Value Property Characterizes Polynomial on a Space Vn. (Short Communication).
Aequationes mathematicae, Tome 1 (1968), pp. 317-318.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

@article{AM2_1968__1_135995,
     author = {M.A. McKiernan},
     title = {Boundedness on a {Set} of {Positive} {Measure} and the {Mean} {Value} {Property} {Characterizes} {Polynomial} on a {Space} {Vn.} {(Short} {Communication).}},
     journal = {Aequationes mathematicae},
     pages = {317--318},
     publisher = {mathdoc},
     volume = {1},
     year = {1968},
     url = {http://geodesic.mathdoc.fr/item/AM2_1968__1_135995/}
}
TY  - JOUR
AU  - M.A. McKiernan
TI  - Boundedness on a Set of Positive Measure and the Mean Value Property Characterizes Polynomial on a Space Vn. (Short Communication).
JO  - Aequationes mathematicae
PY  - 1968
SP  - 317
EP  - 318
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AM2_1968__1_135995/
ID  - AM2_1968__1_135995
ER  - 
%0 Journal Article
%A M.A. McKiernan
%T Boundedness on a Set of Positive Measure and the Mean Value Property Characterizes Polynomial on a Space Vn. (Short Communication).
%J Aequationes mathematicae
%D 1968
%P 317-318
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AM2_1968__1_135995/
%F AM2_1968__1_135995
M.A. McKiernan. Boundedness on a Set of Positive Measure and the Mean Value Property Characterizes Polynomial on a Space Vn. (Short Communication).. Aequationes mathematicae, Tome 1 (1968), pp. 317-318. http://geodesic.mathdoc.fr/item/AM2_1968__1_135995/