A Canonical Formalism for Multiple Integral Problems in the Calculus of Variation. (Short Communication).
Aequationes mathematicae, Tome 1 (1968), pp. 211-212.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

@article{AM2_1968__1_135971,
     author = {Hanno Rund},
     title = {A {Canonical} {Formalism} for {Multiple} {Integral} {Problems} in the {Calculus} of {Variation.} {(Short} {Communication).}},
     journal = {Aequationes mathematicae},
     pages = {211--212},
     publisher = {mathdoc},
     volume = {1},
     year = {1968},
     zbl = {0293.49001},
     url = {http://geodesic.mathdoc.fr/item/AM2_1968__1_135971/}
}
TY  - JOUR
AU  - Hanno Rund
TI  - A Canonical Formalism for Multiple Integral Problems in the Calculus of Variation. (Short Communication).
JO  - Aequationes mathematicae
PY  - 1968
SP  - 211
EP  - 212
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AM2_1968__1_135971/
ID  - AM2_1968__1_135971
ER  - 
%0 Journal Article
%A Hanno Rund
%T A Canonical Formalism for Multiple Integral Problems in the Calculus of Variation. (Short Communication).
%J Aequationes mathematicae
%D 1968
%P 211-212
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AM2_1968__1_135971/
%F AM2_1968__1_135971
Hanno Rund. A Canonical Formalism for Multiple Integral Problems in the Calculus of Variation. (Short Communication).. Aequationes mathematicae, Tome 1 (1968), pp. 211-212. http://geodesic.mathdoc.fr/item/AM2_1968__1_135971/