Connected pseudofinite unars
Algebra i logika, Tome 63 (2024) no. 3, pp. 280-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We start studying the structure of pseudofinite unars. Necessary (sufficient) conditions of being pseudofinite are formulated for connected unars without cycles, containing no chains, and we give examples showing that these conditions are not sufficient (necessary). It is noted that a coproduct of chains is a pseudofinite unar; in particular, a chain is a pseudofinite unar. A nonpseudofinite connected unar without cycles, containing exactly one chain is exemplified. For connected unars without cycles, containing two chains, we formulate a necessary condition of being pseudofinite and give an example of a nonpseudofinite unar.
Mots-clés : pseudofinite unar
Keywords: connected unar without cycles.
@article{AL_2024_63_3_a3,
     author = {E. L. Efremov and A. A. Stepanova and S. G. Chekanov},
     title = {Connected pseudofinite unars},
     journal = {Algebra i logika},
     pages = {280--292},
     year = {2024},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a3/}
}
TY  - JOUR
AU  - E. L. Efremov
AU  - A. A. Stepanova
AU  - S. G. Chekanov
TI  - Connected pseudofinite unars
JO  - Algebra i logika
PY  - 2024
SP  - 280
EP  - 292
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_3_a3/
LA  - ru
ID  - AL_2024_63_3_a3
ER  - 
%0 Journal Article
%A E. L. Efremov
%A A. A. Stepanova
%A S. G. Chekanov
%T Connected pseudofinite unars
%J Algebra i logika
%D 2024
%P 280-292
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/AL_2024_63_3_a3/
%G ru
%F AL_2024_63_3_a3
E. L. Efremov; A. A. Stepanova; S. G. Chekanov. Connected pseudofinite unars. Algebra i logika, Tome 63 (2024) no. 3, pp. 280-292. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a3/

[1] D. Garcia, D. Macpherson, C. Steinhorn, “Pseudofinite structures and simplicity”, J. Math. Log., 15:1 (2015), 1550002, 41 pp.

[2] Z. Chatzidakis, “Model theory of finite fields and pseudo-finite fields”, Ann. Pure Appl. Logic, 88:2/3 (1997), 95–108

[3] A. Pillay, Strongly minimal pseudofinite structures, arXiv: 1411.5008 [math.LO]

[4] J. Väänänen, “Pseudo-finite model theory”, Mat. Contemp., 24 (2003), 169–183

[5] N. D. Markhabatov, “Approximations of acyclic graphs”, Bull. Irkutsk State Univ. Ser. Math., 40 (2022), 104–111

[6] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011