Decidable models of Ehrenfeucht theories
Algebra i logika, Tome 63 (2024) no. 3, pp. 235-247
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study countable models of Ehrenfeucht theories, i.e., complete theories with a finite number of countable models, strictly larger than 1. The notion of a primely generated model is introduced. It is proved that if all complete types of an Ehrenfeucht theory have arithmetic complexity, then any of the primely generated models of the theory possesses an arithmetically complex isomorphic presentation.
Keywords: Ehrenfeucht theory, countable model, computable structure, decidable structure, arithmetic structure, arithmetic type.
@article{AL_2024_63_3_a0,
     author = {P. E. Alaev and E. I. Khlestova},
     title = {Decidable models of {Ehrenfeucht} theories},
     journal = {Algebra i logika},
     pages = {235--247},
     year = {2024},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
AU  - E. I. Khlestova
TI  - Decidable models of Ehrenfeucht theories
JO  - Algebra i logika
PY  - 2024
SP  - 235
EP  - 247
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_3_a0/
LA  - ru
ID  - AL_2024_63_3_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%A E. I. Khlestova
%T Decidable models of Ehrenfeucht theories
%J Algebra i logika
%D 2024
%P 235-247
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/AL_2024_63_3_a0/
%G ru
%F AL_2024_63_3_a0
P. E. Alaev; E. I. Khlestova. Decidable models of Ehrenfeucht theories. Algebra i logika, Tome 63 (2024) no. 3, pp. 235-247. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a0/

[1] M. G. Peretyatkin, “O polnykh teoriyakh s konechnym chislom schetnykh modelei”, Algebra i logika, 12:5 (1973), 550–576

[2] M. Morley, “Decidable models”, Israel J. Math., 25:3/4 (1976), 233–240

[3] T. Millar, “Persistently finite theories with hyperarithmetic models”, Trans. Am. Math. Soc., 278:1 (1983), 91–99

[4] T. Millar, “Decidable Ehrenfeucht theories”, Recursion theory, Proc. AMS-ASL Summer Inst. (Ithaca/N.Y., June 28-July 16, 1982), Proc. Symp. Pure Math., 42, Am. Math. Soc., Providence, RI, 1985, 311–321

[5] R. Reed, “A decidable Ehrenfeucht theory with exactly two hyperarithmetic models”, Ann. Pure Appl. Logic, 53:2 (1991), 135–168

[6] C. Ash, T. S. Millar, “Persistently finite, persistently arithmetic theories”, Proc. Am. Math. Soc., 89:3 (1983), 487–492

[7] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, Monografii NGTU, v. 1, 2-e izd., Izd-vo NGTU, Novosibirsk, 2018

[8] E. Khlestova, “Arithmetical decidability of homogeneous and almost prime countable models of Ehrenfeucht theories with arithmetical types”, J. Math. Sci., New York, 267:4 (2022), 483–486