@article{AL_2024_63_3_a0,
author = {P. E. Alaev and E. I. Khlestova},
title = {Decidable models of {Ehrenfeucht} theories},
journal = {Algebra i logika},
pages = {235--247},
year = {2024},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2024_63_3_a0/}
}
P. E. Alaev; E. I. Khlestova. Decidable models of Ehrenfeucht theories. Algebra i logika, Tome 63 (2024) no. 3, pp. 235-247. http://geodesic.mathdoc.fr/item/AL_2024_63_3_a0/
[1] M. G. Peretyatkin, “O polnykh teoriyakh s konechnym chislom schetnykh modelei”, Algebra i logika, 12:5 (1973), 550–576
[2] M. Morley, “Decidable models”, Israel J. Math., 25:3/4 (1976), 233–240
[3] T. Millar, “Persistently finite theories with hyperarithmetic models”, Trans. Am. Math. Soc., 278:1 (1983), 91–99
[4] T. Millar, “Decidable Ehrenfeucht theories”, Recursion theory, Proc. AMS-ASL Summer Inst. (Ithaca/N.Y., June 28-July 16, 1982), Proc. Symp. Pure Math., 42, Am. Math. Soc., Providence, RI, 1985, 311–321
[5] R. Reed, “A decidable Ehrenfeucht theory with exactly two hyperarithmetic models”, Ann. Pure Appl. Logic, 53:2 (1991), 135–168
[6] C. Ash, T. S. Millar, “Persistently finite, persistently arithmetic theories”, Proc. Am. Math. Soc., 89:3 (1983), 487–492
[7] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, Monografii NGTU, v. 1, 2-e izd., Izd-vo NGTU, Novosibirsk, 2018
[8] E. Khlestova, “Arithmetical decidability of homogeneous and almost prime countable models of Ehrenfeucht theories with arithmetical types”, J. Math. Sci., New York, 267:4 (2022), 483–486