Groups of permutations and ideals of Turing degrees
Algebra i logika, Tome 63 (2024) no. 2, pp. 209-224

Voir la notice de l'article provenant de la source Math-Net.Ru

We study degrees and degree spectra of groups $\mathfrak{G}_{\mathrm{I}}$ defined on a set of permutations on the natural numbers $\omega$ whose degrees belong to a Turing ideal $\mathrm{I}$. A necessary condition and a sufficient condition are stated which specify whether an arbitrary Turing degree belongs to the degree spectrum of a group $\mathfrak{G}_{\mathrm{I}}$. Nonprincipal ideals $\mathrm{I}$ for which the group $\mathfrak{G}_{\mathrm{I}}$ has or does not have a degree are exemplified.
Keywords: computable permutation, Turing degree, Turing ideal, degree of permutation group, degree spectrum.
Mots-clés : permutation group
@article{AL_2024_63_2_a4,
     author = {A. S. Morozov and V. G. Puzarenko and M. Kh. Faizrahmanov},
     title = {Groups of permutations and ideals of {Turing} degrees},
     journal = {Algebra i logika},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_2_a4/}
}
TY  - JOUR
AU  - A. S. Morozov
AU  - V. G. Puzarenko
AU  - M. Kh. Faizrahmanov
TI  - Groups of permutations and ideals of Turing degrees
JO  - Algebra i logika
PY  - 2024
SP  - 209
EP  - 224
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_2_a4/
LA  - ru
ID  - AL_2024_63_2_a4
ER  - 
%0 Journal Article
%A A. S. Morozov
%A V. G. Puzarenko
%A M. Kh. Faizrahmanov
%T Groups of permutations and ideals of Turing degrees
%J Algebra i logika
%D 2024
%P 209-224
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2024_63_2_a4/
%G ru
%F AL_2024_63_2_a4
A. S. Morozov; V. G. Puzarenko; M. Kh. Faizrahmanov. Groups of permutations and ideals of Turing degrees. Algebra i logika, Tome 63 (2024) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/AL_2024_63_2_a4/