Mots-clés : conjugacy classes.
@article{AL_2024_63_2_a2,
author = {I. B. Gorshkov and V. V. Pan'shin},
title = {Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes},
journal = {Algebra i logika},
pages = {154--166},
year = {2024},
volume = {63},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2024_63_2_a2/}
}
I. B. Gorshkov; V. V. Pan'shin. Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes. Algebra i logika, Tome 63 (2024) no. 2, pp. 154-166. http://geodesic.mathdoc.fr/item/AL_2024_63_2_a2/
[1] E. I. Khukhro, V. D. Mazurov (eds.), Unsolved problems in group theory, The Kourovka notebook, 20, Sobolev Institute of Mathematics, Novosibirsk, 2022 https://alglog.org/20tkt.pdf
[2] I. B. Gorshkov, “On Thompson's conjecture for finite simple groups”, Commun. Algebra, 47:12 (2019), 5192–5206
[3] I. B. Gorshkov, “On characterization of a finite group by the set of conjugacy class sizes”, J. Algebra Appl., 21:11 (2022), 2250226, 8 pp.
[4] V. Panshin, “On recognition of $A_6\times A_6$ by the set of conjugacy class sizes”, Sib. El. Math. J., 19:2 (2022), 762–767
[5] I. B. Gorshkov, “Structure of finite groups with restrictions on the set of conjugacy classes sizes”, Commun. Math., 32:1 (2024), 63–71
[6] A. Beltran, M. J. Felipe, “Some class size conditions implying solvability of finite groups”, J. Group Theory, 9 (2006), 787–797
[7] A. Beltran, M. J. Felipe, “Variations on a theorem by Alan Camina on conjugacy class sizes”, J. Algebra, 296:1 (2006), 253–266
[8] A. R. Camina, “Arithmetical conditions on the conjugacy class numbers of a finite group”, J. London Math. Soc. (2), 5 (1972), 127–132
[9] C. Shao, Q. Jiang, “Determining group structure by set of conjugacy class sizes”, Comm. Algebra, 48:4 (2020), 1626–1631
[10] D. Gorenstein, Finite Groups, Harper and Row, Publishers Inc., New York, 1968
[11] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985
[12] The GAP Group, GAP — Groups, Algorithms, Programming — A System for Computational Discrete Algebra , vers. 4.10.2, , 2019 http://www.gap-system.org
[13] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976