Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes
Algebra i logika, Tome 63 (2024) no. 2, pp. 154-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a finite group $G$, we denote by $N(G)$ the set of its conjugacy class sizes. Recently, the following question was posed: given any $n\in\mathbb{N}$ and an arbitrary non-Abelian finite simple group $S$, is it true that $G\simeq S^n$ if $G$ is a group with trivial center and $N(G)=N(S^n)$? The answer to this question is known for all simple groups $S$ with $n=1$, and also for $S\in\{A_5,A_6\}$, where $A_k$ denotes the alternating group of degree $k$, with $n=2$. It is proved that the group $A_5\times A_5\times A_5$ is uniquely defined by the set $N(A_5\times A_5\times A_5)$ in the class of finite groups with trivial center.
Keywords: finite groups, alternating groups
Mots-clés : conjugacy classes.
@article{AL_2024_63_2_a2,
     author = {I. B. Gorshkov and V. V. Pan'shin},
     title = {Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes},
     journal = {Algebra i logika},
     pages = {154--166},
     year = {2024},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_2_a2/}
}
TY  - JOUR
AU  - I. B. Gorshkov
AU  - V. V. Pan'shin
TI  - Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes
JO  - Algebra i logika
PY  - 2024
SP  - 154
EP  - 166
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_2_a2/
LA  - ru
ID  - AL_2024_63_2_a2
ER  - 
%0 Journal Article
%A I. B. Gorshkov
%A V. V. Pan'shin
%T Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes
%J Algebra i logika
%D 2024
%P 154-166
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/AL_2024_63_2_a2/
%G ru
%F AL_2024_63_2_a2
I. B. Gorshkov; V. V. Pan'shin. Characterization of the group $A_5\times A_5\times A_5$ by the set of conjugacy class sizes. Algebra i logika, Tome 63 (2024) no. 2, pp. 154-166. http://geodesic.mathdoc.fr/item/AL_2024_63_2_a2/

[1] E. I. Khukhro, V. D. Mazurov (eds.), Unsolved problems in group theory, The Kourovka notebook, 20, Sobolev Institute of Mathematics, Novosibirsk, 2022 https://alglog.org/20tkt.pdf

[2] I. B. Gorshkov, “On Thompson's conjecture for finite simple groups”, Commun. Algebra, 47:12 (2019), 5192–5206

[3] I. B. Gorshkov, “On characterization of a finite group by the set of conjugacy class sizes”, J. Algebra Appl., 21:11 (2022), 2250226, 8 pp.

[4] V. Panshin, “On recognition of $A_6\times A_6$ by the set of conjugacy class sizes”, Sib. El. Math. J., 19:2 (2022), 762–767

[5] I. B. Gorshkov, “Structure of finite groups with restrictions on the set of conjugacy classes sizes”, Commun. Math., 32:1 (2024), 63–71

[6] A. Beltran, M. J. Felipe, “Some class size conditions implying solvability of finite groups”, J. Group Theory, 9 (2006), 787–797

[7] A. Beltran, M. J. Felipe, “Variations on a theorem by Alan Camina on conjugacy class sizes”, J. Algebra, 296:1 (2006), 253–266

[8] A. R. Camina, “Arithmetical conditions on the conjugacy class numbers of a finite group”, J. London Math. Soc. (2), 5 (1972), 127–132

[9] C. Shao, Q. Jiang, “Determining group structure by set of conjugacy class sizes”, Comm. Algebra, 48:4 (2020), 1626–1631

[10] D. Gorenstein, Finite Groups, Harper and Row, Publishers Inc., New York, 1968

[11] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985

[12] The GAP Group, GAP — Groups, Algorithms, Programming — A System for Computational Discrete Algebra , vers. 4.10.2, , 2019 http://www.gap-system.org

[13] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, 1976