Products of quandles
Algebra i logika, Tome 63 (2024) no. 2, pp. 111-142
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We generalize the constructions of $Q$- and $G$-families of quandles introduced in the paper of A. Ishii et al. in [Ill. J. Math., 57, No. 3, 817—838 (2013)], and establish how they are related to other constructions of quandles. A composition of structures of quandles defined on the same set is specified, and conditions are found under which this composition yields a quandle. It is proved that under such a multiplication we obtain a group that will be Abelian. Also a direct product of quandles is examined.
Keywords: rack
Mots-clés : quandle, quandle structure, multiplication of quandles.
@article{AL_2024_63_2_a0,
     author = {V. G. Bardakov and D. A. Fedoseev},
     title = {Products of quandles},
     journal = {Algebra i logika},
     pages = {111--142},
     year = {2024},
     volume = {63},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_2_a0/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - D. A. Fedoseev
TI  - Products of quandles
JO  - Algebra i logika
PY  - 2024
SP  - 111
EP  - 142
VL  - 63
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_2_a0/
LA  - ru
ID  - AL_2024_63_2_a0
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A D. A. Fedoseev
%T Products of quandles
%J Algebra i logika
%D 2024
%P 111-142
%V 63
%N 2
%U http://geodesic.mathdoc.fr/item/AL_2024_63_2_a0/
%G ru
%F AL_2024_63_2_a0
V. G. Bardakov; D. A. Fedoseev. Products of quandles. Algebra i logika, Tome 63 (2024) no. 2, pp. 111-142. http://geodesic.mathdoc.fr/item/AL_2024_63_2_a0/

[1] D. Joyce, “A classifying invariant of knots, the knot quandle”, J. Pure Appl. Algebra, 23:1 (1982), 37–65

[2] S. V. Matveev, “Distributivnye gruppoidy v teorii uzlov”, Mat. sbornik, 119(161):1(9) (1982), 78–88

[3] S. Nelson, “The combinatorial revolution in knot theory”, Notices Amer. Math. Soc., 58:11 (2011), 1553–1561

[4] M. Eisermann, “Yang—Baxter deformations of quandles and racks”, Algebr. Geom. Topol., 5:2 (2005), 537–562

[5] O. Loos, “Reflexion spaces and homogeneous symmetric spaces”, Bull. Am. Math. Soc., 73:2 (1967), 250–253

[6] N. Andruskiewitsch, M. Grana, “From racks to pointed Hopf algebras”, Adv. Math., 178:2 (2003), 177–243

[7] V. G. Bardakov, T. Nasybullov, M. Singh, “General constructions of biquandles and their symmetries”, Journal of Pure and Applied Algebra, 226:7 (2022), 106936

[8] V. Bardakov, M. Singh, “Quandle cohomology, extensions and automorphisms”, J. Algebra, 585 (2021), 558–591

[9] M. Elhamdadi, E. M. Moutuou, Finitely stable racks and rack representations, arXiv: 1611.04453

[10] T. Nosaka, Quandles and Topological Pairs. Symmetry, Knots, and Cohomology, BRIEFSMATH, Springer, Singapore, 2017

[11] V. Bardakov, T. Nasybullov, “Embeddings of quandles into groups”, J. Algebra Appl., 19:7 (2020), 2050136

[12] V. Bardakov, P. Dey, M. Singh, “Automorphism groups of quandles arising from groups”, Monatsh. Math., 184:7 (2017), 519–530

[13] V. G. Bardakov, T. Nasybullov, M. Singh, “Automorphism groups of quandles and related groups”, Monatsh. Math., 189:1 (2019), 1–21

[14] M. Elhamdadi, J. Macquarrie, R. Restrepo, “Automorphism groups of quandles”, J. Algebra Appl., 11:1 (2012), 1250008

[15] V. G. Bardakov, I. B. S. Passi, M. Singh, “Quandle rings”, J. Algebra Appl., 18:8 (2019), 1950157

[16] V. G. Bardakov, I. B. S. Passi, M. Singh, “Zero-divisors and idempotents in quandle rings”, Osaka J. Math., 59:3 (2022), 611–637

[17] M. Elhamdadi, N. Fernando, B. Tsvelikhovskiy, “Ring theoretic aspects of quandles”, J. Algebra, 526 (2019), 166–187

[18] A. Ishii, “Moves and invariants for knotted handlebodies”, Algebr. Geom. Topol., 8:3 (2008), 1403–1418

[19] A. Ishii, M. Iwakiri, Y. Jang, K. Oshiro, “A $G$-family of quandles and handlebody-knots”, Illinois J. Math., 57:3 (2013), 817–838

[20] A. Ishii, “A multiple conjugation quandle and handlebody-knots”, Topology Appl., Part B, 196 (2015), 492–500

[21] V. Turaev, Multi-quandles of topological pairs, arXiv: 2205.00951

[22] B. Ho, S. Nelson, “Matrices and finite quandles”, Homology Homotopy Appl., 7:1 (2005), 197–208

[23] M. Elhamdadi, M. Saito, E. Zappala, “Higher arity self-distributive operations in Cascades and their cohomology”, J. Algebra Appl., 20:7 (2021), 2150116

[24] R. Fenn, M. Jordan-Santana, L. Kauffman, “Biquandles and Virtual Links”, Topology Appl., 145:1–3 (2004), 157–175

[25] D. A. Fedoseev, “The quandles with two operations”, Mosc. Univ. Math. Bull., 66:6 (2011), 239–243