Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank
Algebra i logika, Tome 63 (2024) no. 1, pp. 77-88
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that, for any natural $n$, the subalgebra generated by words of length divisible by $n$ on generators (the Veronese $n$-subalgebra) in a free finitely generated alternative algebra is finitely generated.
Mots-clés : Veronese subalgebra
Keywords: free alternative algebra of finite rank.
@article{AL_2024_63_1_a5,
     author = {S. V. Pchelintsev and I. P. Shestakov},
     title = {Finite generatedness of {Veronese} subalgebras of a free alternative algebra of finite rank},
     journal = {Algebra i logika},
     pages = {77--88},
     year = {2024},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_1_a5/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
AU  - I. P. Shestakov
TI  - Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank
JO  - Algebra i logika
PY  - 2024
SP  - 77
EP  - 88
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_1_a5/
LA  - ru
ID  - AL_2024_63_1_a5
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%A I. P. Shestakov
%T Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank
%J Algebra i logika
%D 2024
%P 77-88
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/AL_2024_63_1_a5/
%G ru
%F AL_2024_63_1_a5
S. V. Pchelintsev; I. P. Shestakov. Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank. Algebra i logika, Tome 63 (2024) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/AL_2024_63_1_a5/

[1] V. K. Kharchenko, “Noncommutative invariants of finite groups and Noetherian varieties”, J. Pure Appl. Algebra, 31:1–3 (1984), 83–90 | MR

[2] K.A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR

[3] I. P. Shestakov, “Alternativnye algebry s tozhdestvom $[x,y]^n = 0$”, Algebra i logika, 20:5 (1981), 575–596 | MR

[4] S. V. Pchelintsev, “Nilpotentnost assotsiatornogo ideala svobodnogo konechnoporozhdennogo $(-1,1)$-koltsa”, Algebra i logika, 14:5 (1975), 543–571 | MR

[5] I. R. Nentzel, “The characterization of $(-1,1)$ rings”, J. Algebra, 30 (1974), 236–258 | MR

[6] G. V. Dorofeev, “O nilpotentnosti pravoalternativnykh kolets”, Algebra i logika, 9:3 (1970), 302–305 | MR

[7] I. P. Shestakov, “Ob odnoi probleme Shirshova”, Algebra i logika, 16:2 (1977), 227–246 | MR

[8] V. Dotsenko, U. Umirbaev, An effective criterion for Nielsen–Schreier varieties, 2022 | MR

[9] I. P. Shestakov, “Radikaly i nilpotentnye elementy svobodnykh alternativnykh algebr”, Algebra i logika, 14:3 (1975), 354–365 | MR

[10] A. V. Iltyakov, “Svobodnye alternativnye algebry ranga 3”, Algebra i logika, 23:2 (1984), 136–158 | MR

[11] S. V. Polikarpov, I. P. Shestakov, “Neassotsiativnye affinnye algebry”, Algebra i logika, 29:6 (1990), 709–723 | MR