Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank
Algebra i logika, Tome 63 (2024) no. 1, pp. 77-88
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, for any natural $n$, the subalgebra generated by words of length divisible by $n$ on generators (the Veronese $n$-subalgebra) in a free finitely generated alternative algebra is finitely generated.
Mots-clés :
Veronese subalgebra
Keywords: free alternative algebra of finite rank.
Keywords: free alternative algebra of finite rank.
@article{AL_2024_63_1_a5,
author = {S. V. Pchelintsev and I. P. Shestakov},
title = {Finite generatedness of {Veronese} subalgebras of a free alternative algebra of finite rank},
journal = {Algebra i logika},
pages = {77--88},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2024_63_1_a5/}
}
TY - JOUR AU - S. V. Pchelintsev AU - I. P. Shestakov TI - Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank JO - Algebra i logika PY - 2024 SP - 77 EP - 88 VL - 63 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2024_63_1_a5/ LA - ru ID - AL_2024_63_1_a5 ER -
S. V. Pchelintsev; I. P. Shestakov. Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank. Algebra i logika, Tome 63 (2024) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/AL_2024_63_1_a5/