@article{AL_2024_63_1_a3,
author = {F. A. Dudkin and A. V. Usikov},
title = {Residuality by finite $\pi$-groups of tubular groups},
journal = {Algebra i logika},
pages = {39--57},
year = {2024},
volume = {63},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2024_63_1_a3/}
}
F. A. Dudkin; A. V. Usikov. Residuality by finite $\pi$-groups of tubular groups. Algebra i logika, Tome 63 (2024) no. 1, pp. 39-57. http://geodesic.mathdoc.fr/item/AL_2024_63_1_a3/
[1] J. P. Serre, Trees, Springer, Berlin a.o., 1980 | MR
[2] D. T. Wise, “Cubular tubular groups”, Trans. Amer. Math. Soc., 366:10 (2014), 5503–5521 | DOI | MR
[3] J. Button, “Tubular free by cyclic groups act freely on CAT(0) cube complexes”, Canad. Math. Bull., 60:1 (2017), 54–62 | DOI | MR
[4] D. T. Wise, “A non-Hopfian automatic group”, J. Algebra, 180:3 (1996), 845–847 | DOI | MR
[5] R. G. Burns, A. Karrass, D. Solitar, “A note on groups with separable finitely generated subgroups”, Bull. Austral. Math. Soc., 36:1 (1987), 153–160 | DOI | MR
[6] C. H. Cashen, “Quasi-isometries between tubular groups”, Groups Geom. Dyn., 4:3 (2010), 473–516 | DOI | MR
[7] N. Brady, M. R. Bridson, “There is only one gap in the isoperimetric spectrum”, Geom. Funct. Anal., 10:5 (2000), 1053–1070 | DOI | MR
[8] G. Levitt, “Quotients and subgroups of Baumslag–Solitar groups”, J. Group Theory, 18:1 (2015), 1–43 | DOI | MR
[9] F. A. Dudkin, “${\cal F}_\pi$-residuality of generalized Baumslag–Solitar groups”, Archiv der Mathematik, 114:2 (2020), 129–134 | DOI | MR
[10] N. Hoda, D. T. Wise, D. J. Woodhouse, “Residually finite tubular groups”, Proc. R. Soc. Edinb., Sec. A, Math., 150:6 (2020), 2973–2951 | MR
[11] D. I. Moldavanskii, “Approksimiruemost konechnymi p-gruppami nekotorykh HNN-rasshirenii grupp”, Vestn. Ivanovskogo gos. un-ta, 3 (2003), 102–116