Residuality by finite $\pi$-groups of tubular groups
Algebra i logika, Tome 63 (2024) no. 1, pp. 39-57
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A finitely generated group $G$, which acts on a tree so that all edge stabilizers are infinite cyclic groups and all vertex stabilizers are free rank $2$ Abelian groups, is called a tubular group. Every tubular group is isomorphic to the fundamental group $\pi_1(\mathcal G)$ of a suitable finite graph ${\mathcal G}$ of groups. We prove a criterion for residuality by finite $\pi$-groups of tubular groups presented by trees of groups. Also we state a criterion for residuality by finite $p$-groups of tubular groups whose corresponding graph contains one edge outside a maximal subtree.
Keywords: residuality by $\pi$-groups, residual finiteness, tubular groups.
@article{AL_2024_63_1_a3,
     author = {F. A. Dudkin and A. V. Usikov},
     title = {Residuality by finite $\pi$-groups of tubular groups},
     journal = {Algebra i logika},
     pages = {39--57},
     year = {2024},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_1_a3/}
}
TY  - JOUR
AU  - F. A. Dudkin
AU  - A. V. Usikov
TI  - Residuality by finite $\pi$-groups of tubular groups
JO  - Algebra i logika
PY  - 2024
SP  - 39
EP  - 57
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_1_a3/
LA  - ru
ID  - AL_2024_63_1_a3
ER  - 
%0 Journal Article
%A F. A. Dudkin
%A A. V. Usikov
%T Residuality by finite $\pi$-groups of tubular groups
%J Algebra i logika
%D 2024
%P 39-57
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/AL_2024_63_1_a3/
%G ru
%F AL_2024_63_1_a3
F. A. Dudkin; A. V. Usikov. Residuality by finite $\pi$-groups of tubular groups. Algebra i logika, Tome 63 (2024) no. 1, pp. 39-57. http://geodesic.mathdoc.fr/item/AL_2024_63_1_a3/

[1] J. P. Serre, Trees, Springer, Berlin a.o., 1980 | MR

[2] D. T. Wise, “Cubular tubular groups”, Trans. Amer. Math. Soc., 366:10 (2014), 5503–5521 | DOI | MR

[3] J. Button, “Tubular free by cyclic groups act freely on CAT(0) cube complexes”, Canad. Math. Bull., 60:1 (2017), 54–62 | DOI | MR

[4] D. T. Wise, “A non-Hopfian automatic group”, J. Algebra, 180:3 (1996), 845–847 | DOI | MR

[5] R. G. Burns, A. Karrass, D. Solitar, “A note on groups with separable finitely generated subgroups”, Bull. Austral. Math. Soc., 36:1 (1987), 153–160 | DOI | MR

[6] C. H. Cashen, “Quasi-isometries between tubular groups”, Groups Geom. Dyn., 4:3 (2010), 473–516 | DOI | MR

[7] N. Brady, M. R. Bridson, “There is only one gap in the isoperimetric spectrum”, Geom. Funct. Anal., 10:5 (2000), 1053–1070 | DOI | MR

[8] G. Levitt, “Quotients and subgroups of Baumslag–Solitar groups”, J. Group Theory, 18:1 (2015), 1–43 | DOI | MR

[9] F. A. Dudkin, “${\cal F}_\pi$-residuality of generalized Baumslag–Solitar groups”, Archiv der Mathematik, 114:2 (2020), 129–134 | DOI | MR

[10] N. Hoda, D. T. Wise, D. J. Woodhouse, “Residually finite tubular groups”, Proc. R. Soc. Edinb., Sec. A, Math., 150:6 (2020), 2973–2951 | MR

[11] D. I. Moldavanskii, “Approksimiruemost konechnymi p-gruppami nekotorykh HNN-rasshirenii grupp”, Vestn. Ivanovskogo gos. un-ta, 3 (2003), 102–116