Box-quasimetrics and horizontal joinability on Cartan groups
Algebra i logika, Tome 63 (2024) no. 1, pp. 15-29
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On a Cartan group $\mathbb K$ equipped with a Carnot–Carathéodory metric $d_{cc}$, we find the exact value of a constant in the $(1,q_2)$-generalized triangle inequality for its Box-quasimetric. It is proved that any two points $x,y\in\Bbb K$ can be joined by a horizontal $k$-broken line $L^k_{x,y}$, $k\leq 6$; moreover, the length of such a broken line $L^k_{x,y}$ does not exceed the quantity $Cd_{cc}(x,y)$ for some constant $C$ not depending on the choice of $x,y\in\mathbb K$. The value $6$ here is nearly optimal.
Mots-clés : Cartan group, $(q_1,q_2)$-quasimetric space, Box-quasimetric
Keywords: horizontal broken line, Rashevskii–Chow theorem.
@article{AL_2024_63_1_a1,
     author = {A. V. Greshnov and V. S. Kostyrkin},
     title = {Box-quasimetrics and horizontal joinability on {Cartan} groups},
     journal = {Algebra i logika},
     pages = {15--29},
     year = {2024},
     volume = {63},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2024_63_1_a1/}
}
TY  - JOUR
AU  - A. V. Greshnov
AU  - V. S. Kostyrkin
TI  - Box-quasimetrics and horizontal joinability on Cartan groups
JO  - Algebra i logika
PY  - 2024
SP  - 15
EP  - 29
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AL_2024_63_1_a1/
LA  - ru
ID  - AL_2024_63_1_a1
ER  - 
%0 Journal Article
%A A. V. Greshnov
%A V. S. Kostyrkin
%T Box-quasimetrics and horizontal joinability on Cartan groups
%J Algebra i logika
%D 2024
%P 15-29
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/AL_2024_63_1_a1/
%G ru
%F AL_2024_63_1_a1
A. V. Greshnov; V. S. Kostyrkin. Box-quasimetrics and horizontal joinability on Cartan groups. Algebra i logika, Tome 63 (2024) no. 1, pp. 15-29. http://geodesic.mathdoc.fr/item/AL_2024_63_1_a1/

[1] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya: Mathematics, 82:2 (2018), 245–272 | DOI | MR

[2] A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii, K. V. Storozhuk, “Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics”, Topology Appl., 221 (2017), 178–194 | DOI | MR

[3] A. V. Greshnov, “$(q_1,q_2)$-quasimetrics bi-Lipschitz equivalent to 1-quasimetrics”, Siberian Adv. Math., 27:4 (2017), 253–262 | DOI | MR

[4] A. V. Greshnov, “Regularization of distance functions and separation axioms on $(q_1, q_2)$-quasimetric spaces”, Sib. Electron. Math. Reports, 14 (2017), 765–773 | MR

[5] A. V. Greshnov, “Some problems of regularity of $f$-quasimetrics”, Sib. Electron. Math. Reports, 15 (2018), 355–361 | MR

[6] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points. A review of the results”, Fixed Point Theory, 23:2 (2022), 473–486 | DOI | MR

[7] W. A. Wilson, “On quasi-metric spaces”, Am. J. Math., 53:3 (1931), 675–684 | DOI | MR

[8] S. K. Vodopyanov, “Geometry of Carnot–Carathéodory spaces and differentiability of mappings”, Contemp. Math., 424, 2007, 247–301 | DOI | MR

[9] S. G. Basalaev, S. K. Vodopyanov, “Approximate differentiability of mappings of Carnot–Carathéodory spaces”, Eurasian Math. J., 4:2 (2013), 10–48 | MR

[10] A. V. Greshnov, “On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields”, Siberian Adv. Math., 22:2 (2012), 95–114 | DOI | MR

[11] A. V. Greshnov, “Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$”, Siberian Adv. Math., 23:3 (2013), 180–191 | DOI | MR

[12] A. V. Greshnov, M. V. Tryamkin, “Exact values of constants in the generalized triangle inequality for some $(1,q_2)$-quasimetrics on canonical Carnot groups”, Math. Notes, 98:4 (2015), 694–698 | DOI | MR

[13] A. Nagel, E. M. Stein, S. Wainger, “Balls and metrics defined by vector fields. I. Basic properties”, Acta Math., 155 (1985), 103–147 | DOI | MR

[14] S. K. Vodopyanov, M. B. Karmanova, “Geometry of Carnot–Carathéodory spaces, differentiability, coarea and area formulas”, Analysis and mathematical physics, Trends Math., Birkhauser, Basel, 2009, 233–335 | MR

[15] A. Greshnov, V. Potapov, “About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics”, AIMS Math., 8:3 (2023), 6191–6205 | DOI | MR

[16] A. V. Greshnov, “On finding the exact values of the constant in a $(1,q_2)$- generalized triangle inequality for Box-quasimetrics on 2-step Carnot groups with 1-dimensional center”, Sib. Electron. Math. Reports, 18:2 (2021), 1251–1260 | MR

[17] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry, Cambridge Univ. Press, Cambridge, 2020 | MR

[18] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacian, Springer–Verlag, Berlin–Heidelberg, 2007 | MR

[19] A. V. Greshnov, “Optimal horizontal joinability on the Engel group”, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 32:3 (2021), 535–547 | DOI | MR

[20] A. V. Greshnov, R. I. Zhukov, “Gorizontalnaya soedinimost na kanonicheskoi 3-stupenchatoi gruppe Karno s gorizontalnym raspredeleniem koranga 2”, Sib. matem. zh., 62:4 (2021), 736–746

[21] A. V. Greshnov, R. I. Zhukov, “Gorizontalnaya soedinimost na 5-mernoi 2-stupenchatoi gruppe Karno s gorizontalnym raspredeleniem korazmernosti 2”, Algebra i logika, 62:2 (2023), 205–218

[22] A. P. Mashtakov, “Algoritmicheskoe i programmnoe obespechenie resheniya konstruktivnoi zadachi upravleniya negolonomnymi pyatimernymi sistemami”, Prog. sist.: teor. pril., 2012, no. 1, 3–29

[23] A. V. Greshnov, “Metod Agracheva–Barilari–Boskaina i otsenki chisla zvenev gorizontalnykh lomanykh, soedinyayuschikh tochki v kanonicheskoi gruppe Karno $G_{3,3}$”, Optimalnoe upravlenie i dinamicheskie sistemy, Sb. statei. K 95-letiyu akad. R. V. Gamkrelidze, Trudy MIAN, 321, MIAN, M., 2023, 108–117 | DOI

[24] M. M. Postnikov, Gruppy i algebry Li, Nauka, M., 1982 | MR