Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2023_62_5_a0, author = {M. A. Vsemirnov and Ya. N. Nuzhin}, title = {Generating triples of conjugate involutions for finite simple groups}, journal = {Algebra i logika}, pages = {569--592}, publisher = {mathdoc}, volume = {62}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a0/} }
M. A. Vsemirnov; Ya. N. Nuzhin. Generating triples of conjugate involutions for finite simple groups. Algebra i logika, Tome 62 (2023) no. 5, pp. 569-592. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a0/
[1] G. Malle, J. Saxl, T. Weigel, “Generation of classical groups”, Geom. Dedicata, 49:1 (1994), 85–116 | DOI
[2] E. I. Khukhro, V. D. Mazurov (eds.), Unsolved problems in group theory. The Kourovka notebook, 20, Sobolev Institute of Mathematics, Novosibirsk, 2022 https://alglog.org/20tkt.pdf
[3] L. Di Martino, M. C. Tamburini, “2-Generation of finite simple groups and some related topics”, Generators and relations in groups and geometries, Proc. NATO/ASI (Castelvecchio-Pascoli/Italy 1990), NATO ASI Ser., Ser. C, 333, eds. A. Barlotti et al., Kluwer Academic Publishers, Dordrecht, 1991, 195–233
[4] F. Lübeck, G. Malle, “$(2,3)$-generation of exceptional groups”, J. London Math. Soc., II. Ser., 59:1 (1999), 109–122 | DOI
[5] M. W. Liebeck, A. Shalev, “Classical groups, probabilistic methods, and the $(2,3)$-generation problem”, Ann. Math. (2), 144:1 (1996), 77–125 | DOI
[6] M. A. Vsemirnov, “On (2,3)-generated groups”, The Int. conf. group theory in honor of the 70th birthday of prof. Victor D. Mazurov (July 16-20, 2013, Novosibirsk), 2013 http://math.nsc.ru/conference/groups2013/slides/MaximVsemirnov_slides.pdf
[7] M. A. Pellegrini, M. Prandelli, M. C. Tamburini Bellani, “The $(2,3)$-generation of the special unitary groups of dimension 6”, J. Algebra Appl., 15:9 (2016), 1650171, 12 pp. | DOI
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985
[9] G. A. Miller, “Possible orders of two generators of the alternating and of the symmetric groups”, Trans. Amer. Math. Soc., 30 (1928), 24–32
[10] A. J. Woldar, “On Hurwitz generation and genus actions of sporadic groups”, Ill. J. Math., 33:3 (1989), 416–437
[11] M. A. Pellegrini, “The $(2,3)$-generation of the special linear groups over finite fields”, Bull. Aust. Math. Soc., 95:1 (2017), 48–53 | DOI
[12] M. A. Pellegrini, M. C. Tamburini Bellani, “The $(2,3)$-generation of the finite unitary groups”, J. Algebra, 549 (2020), 319–345 | DOI
[13] M. A. Pellegrini, M. C. Tamburini Bellani, “On the $(2,3)$-generation of the finite symplectic groups”, J. Algebra, 598 (2022), 156–193 | DOI
[14] A. Wagner, “The minimal number of involutions generating some finite three dimensional groups”, Boll. Unione Mat. Ital., V. Ser., A 15:5 (1978), 431–439
[15] J. M. Ward, Generation of simple groups by conjugate involutions, PhD thesis, Queen Mary college, Univ. London, 2009 https://webspace.maths.qmul.ac.uk/r.a.wilson/JWardPhD.pdf
[16] Ya. N. Nuzhin, “O porozhdayuschikh mnozhestvakh involyutsii prostykh konechnykh grupp”, Algebra i logika, 58:3 (2019), 426–434
[17] Ya. N. Nuzhin, “Porozhdayuschie mnozhestva elementov grupp Shevalle nad konechnym polem”, Algebra i logika, 28:6 (1989), 670–686
[18] Ya. N. Nuzhin, “O porozhdayuschikh troikakh involyutsii grupp lieva tipa ranga 2 nad konechnymi polyami”, Algebra i logika, 58:1 (2019), 84–107
[19] R. Steinberg, “Generators for simple groups”, Can. J. Math., 14 (1962), 277–283 | DOI
[20] L. L. Scott, “Matrices and cohomology”, Ann. Math. (2), 105 (1977), 473–492 | DOI
[21] Ya. N. Nuzhin, “Porozhdayuschie troiki involyutsii grupp Shevalle nad konechnym polem kharakteristiki 2”, Algebra i logika, 29:2 (1990), 192–206
[22] Ya. N. Nuzhin, “O gruppakh, zaklyuchennykh mezhdu gruppami lieva tipa nad razlichnymi polyami”, Algebra i logika, 22:5 (1983), 526–541
[23] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, Lond. Math. Soc. Lect. Note Ser., 129, Cambridge Univ. Press, Cambridge etc., 1990
[24] L. J. Rylands, D. E. Taylor, “Matrix generators for the orthogonal groups”, J. Symb. Comput., 25:3 (1998), 351–360 | DOI