Generating triples of conjugate involutions for finite simple groups
Algebra i logika, Tome 62 (2023) no. 5, pp. 569-592
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that among finite simple non-Abelian groups, only the groups $U_3(3)$ and $A_8$ are not generated by three conjugate involutions. This result is obtained modulo a known conjecture on the description of finite simple groups generated by two elements of orders 2 and 3.
Keywords:
finite simple group, generating triples of conjugate involutions, characters of a group.
@article{AL_2023_62_5_a0,
author = {M. A. Vsemirnov and Ya. N. Nuzhin},
title = {Generating triples of conjugate involutions for finite simple groups},
journal = {Algebra i logika},
pages = {569--592},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_5_a0/}
}
M. A. Vsemirnov; Ya. N. Nuzhin. Generating triples of conjugate involutions for finite simple groups. Algebra i logika, Tome 62 (2023) no. 5, pp. 569-592. http://geodesic.mathdoc.fr/item/AL_2023_62_5_a0/