Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations
Algebra i logika, Tome 62 (2023) no. 4, pp. 458-478

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma$ be a partition of the set of all prime numbers into a union of pairwise disjoint subsets. Using the idea of multiple localization due to A. N. Skiba, we introduce the notion of a Baer $n$-multiply $\sigma$-local formation of finite groups. It is proved that with respect to inclusion $\subseteq$, the collection of all such formations form a complete algebraic modular lattice. Thereby we generalize the result obtained by A. N. Skiba and L. A. Shemetkov in [Ukr. Math. J., 52, No. 6, 783–797 (2000)].
Keywords: finite group, generalized formation $\sigma$-function, Baer $\sigma$-local formation, Baer $n$-multiply $\sigma$-local formation, complete lattice of formations, modular lattice, algebraic lattice.
Mots-clés : formation
@article{AL_2023_62_4_a1,
     author = {N. N. Vorob'ev},
     title = {Modularity of the lattice of {Baer} $n$-multiply $\sigma$-local formations},
     journal = {Algebra i logika},
     pages = {458--478},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
TI  - Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations
JO  - Algebra i logika
PY  - 2023
SP  - 458
EP  - 478
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/
LA  - ru
ID  - AL_2023_62_4_a1
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%T Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations
%J Algebra i logika
%D 2023
%P 458-478
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/
%G ru
%F AL_2023_62_4_a1
N. N. Vorob'ev. Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations. Algebra i logika, Tome 62 (2023) no. 4, pp. 458-478. http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/