Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations
Algebra i logika, Tome 62 (2023) no. 4, pp. 458-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma$ be a partition of the set of all prime numbers into a union of pairwise disjoint subsets. Using the idea of multiple localization due to A. N. Skiba, we introduce the notion of a Baer $n$-multiply $\sigma$-local formation of finite groups. It is proved that with respect to inclusion $\subseteq$, the collection of all such formations form a complete algebraic modular lattice. Thereby we generalize the result obtained by A. N. Skiba and L. A. Shemetkov in [Ukr. Math. J., 52, No. 6, 783–797 (2000)].
Keywords: finite group, generalized formation $\sigma$-function, Baer $\sigma$-local formation, Baer $n$-multiply $\sigma$-local formation, complete lattice of formations, modular lattice, algebraic lattice.
Mots-clés : formation
@article{AL_2023_62_4_a1,
     author = {N. N. Vorob'ev},
     title = {Modularity of the lattice of {Baer} $n$-multiply $\sigma$-local formations},
     journal = {Algebra i logika},
     pages = {458--478},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
TI  - Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations
JO  - Algebra i logika
PY  - 2023
SP  - 458
EP  - 478
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/
LA  - ru
ID  - AL_2023_62_4_a1
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%T Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations
%J Algebra i logika
%D 2023
%P 458-478
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/
%G ru
%F AL_2023_62_4_a1
N. N. Vorob'ev. Modularity of the lattice of Baer $n$-multiply $\sigma$-local formations. Algebra i logika, Tome 62 (2023) no. 4, pp. 458-478. http://geodesic.mathdoc.fr/item/AL_2023_62_4_a1/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Sovrem. algebra, Nauka, M., 1978 | MR

[2] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Sovrem. algebra, Nauka, M., 1989 | MR

[3] A. N. Skiba, Algebra formatsii, Belarus. navuka, Minsk, 1997 | MR

[4] A. N. Skiba, L. A. Shemetkov, “Kratno $\mathfrak{L}$-kompozitsionnye formatsii konechnykh grupp”, Ukr. matem. zh., 52:6 (2000), 783–797 | MR | Zbl

[5] Chzhan Chi, A. N. Skiba, “O $\sum_{t}^{\sigma}$-zamknutykh klassakh konechnykh grupp”, Ukr. matem. zh., 70:12 (2018), 1707–1716

[6] Zhang Chi, V. G. Safonov, A. N. Skiba, “On $n$-multiply $\sigma$-local formations of finite groups”, Commun. Algebra, 47:3 (2019), 957–968 | DOI | MR | Zbl

[7] V. G. Safonov, I. N. Safonova, A. N. Skiba, “On Baer-$\sigma$-local formations of finite groups”, Commun. Algebra, 48:9 (2020), 4002–4012 | DOI | MR | Zbl

[8] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[9] A. N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[10] V. G. Safonov, I. N. Safonova, A. N. Skiba, “On one generalization of $\sigma$-local and Baer-local formations”, PFMT, # 4:41 (2019), 65–69 | MR | Zbl

[11] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[12] A. N. Skiba, “O lokalnykh formatsiyakh dliny 5”, Tr. Gomelskogo seminara, In-t matem. AN BSSR pod red. M. I. Saluka, Minsk, 1986, 135–149

[13] V. A. Artamonov, V. N. Salii, L. A. Skornyakov i dr., Obschaya algebra, v. 2, Sprav. matem. b-ka, ed. L. A. Skornyakov, Nauka, Gl. red. fiz.-mat. lit., M., 1991 | MR

[14] N. N. Vorobev, Algebra klassov konechnykh grupp, VGU im. P. M. Masherova, Vitebsk, 2012

[15] A. Ballester-Bolinches, L. A. Shemetkov, “On lattices of $p$-local formations of finite groups”, Math. Nachr., 186 (1997), 57–65 | DOI | MR | Zbl

[16] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[17] I. P. Shabalina, “O reshetke $\tau$-zamknutykh $n$-kratno $\omega$-lokalnykh formatsii konechnykh grupp”, Vestsi NAN Belarusi. Ser. fiz.-matem. navuk, 2003, no. 1, 28–30 | MR

[18] V. G. Safonov, “On modularity of the lattice of totally saturated formations of finite groups”, Commun. Algebra, 35:11 (2007), 3495–3502 | DOI | MR | Zbl

[19] V. G. Safonov, “On a question of the theory of totally saturated formations of finite groups”, Algebra Colloq., 15:1 (2008), 119–128 | DOI | MR | Zbl

[20] L. A. Shemetkov, A. N. Skiba, N. N. Vorob'ev, “On laws of lattices of partially saturated formations”, Asian-Eur. J. Math., 2:1 (2009), 155–169 | DOI | MR | Zbl

[21] P. A. Zhiznevskii, “O modulyarnosti i induktivnosti reshetki vsekh $\tau$-zamknutykh $n$-kratno $\omega$-kompozitsionnykh formatsii konechnykh grupp”, Izv. Gomel. gos. un-ta im. F. Skoriny, 2010, no. 1(58), 185–191 | Zbl

[22] N. N. Vorobev, A. A. Tsarev, “O modulyarnosti reshetki $\tau$-zamknutykh $n$-kratno $\omega$-kompozitsionnykh formatsii”, Ukr. matem. zh., 62:4 (2010), 453–463 | MR | Zbl

[23] L. A. Shemetkov, A. N. Skiba, N. N. Vorob'ev, “On lattices of formations of finite groups”, Algebra Colloq., 17:4 (2010), 557–564 | DOI | MR | Zbl

[24] N. N. Vorobev, A. N. Skiba, A. A. Tsarev, “Tozhdestva reshetok chastichno kompozitsionnykh formatsii”, Sib. matem. zh., 52:5 (2011), 1011–1024 | MR | Zbl

[25] A. A. Tsarev, N. N. Vorob'ev, “On a question of the theory of partially composition formations”, Algebra Colloq., 21:3 (2014), 437–447 | DOI | MR | Zbl

[26] A. A. Tsarev, N. N. Vorob'ev, “Lattices of composition formations of finite groups and laws”, J. Algebra Appl., 17:5 (2018), 1850084, 17 pp. | DOI | MR | Zbl

[27] V. V. Scherbina, V. G. Safonov, “O podreshetkakh reshetki chastichno totalno nasyschennykh formatsii konechnykh grupp”, Nauchnye vedomosti BelGU. Ser.: Matematika. Fizika, 51:1 (2019), 64–87

[28] V. V. Scherbina, V. G. Safonov, “O nekotorykh svoistvakh reshetki chastichno totalno nasyschennykh formatsii konechnykh grupp”, Nauch. vedomosti BelGU. Ser.: Matem. Fiz., 51:2 (2019), 227–244

[29] A. Tsarev, “On the lattice of all totally composition formations of finite groups”, Ric. Mat., 68:2 (2019), 693–698 | DOI | MR | Zbl

[30] I. N. Safonova, V. G. Safonov, “On some properties of the lattice of totally $\sigma$-local formations of finite groups”, Zhurn. Belorus. gos. un-ta. Matem. Inf., 3 (2020), 6–16 | MR

[31] N. N. Vorobev, I. I. Staselko, A. O. Khodzhagulyev, “Otdelimye reshetki kratno $\sigma$-lokalnykh formatsii”, Sib. matem. zh., 62:4 (2021), 721–735 | Zbl

[32] I. P. Shabalina, “Algebraichnost reshetki $\tau$-zamknutykh $n$-kratno $\omega$-lokalnykh formatsii”, Izv. Gomel. gos. un-ta im. F. Skoriny. Voprosy algebry, 18:5(14) (2002), 59–67 | Zbl

[33] V. G. Safonov, “Ob algebraichnosti reshetki $\tau$-zamknutykh totalno nasyschennykh formatsii”, Algebra i logika, 45:5 (2006), 620–626 | MR | Zbl

[34] V. V. Scherbina, “O dvukh zadachakh teorii chastichno totalno kompozitsionnykh formatsii konechnykh grupp”, PM, 52:1 (2020), 18–32

[35] V. V. Scherbina, “Algebraichnost reshetki $\tau$-zamknutykh totalno $\omega$-nasyschennykh formatsii konechnykh grupp”, Ufimsk. matem. zh., 12:1 (2020), 83–91

[36] A. A. Tsarev, “Algebraic lattices of partially saturated formations of finite groups”, Afr. Mat., 31:3/4 (2020), 701–707 | DOI | MR | Zbl

[37] A. Tsarev, A. Kukharev, “Algebraic lattices of solvably saturated formations and their applications”, Bol. Soc. Mat. Mex., III. Ser., 26:3 (2020), 1003–1014 | DOI | MR | Zbl

[38] I. N. Safonova, “A criterion for $\sigma$-locality of a non-empty formation”, Commun. Algebra, 50:6 (2022), 2366–2376 | DOI | MR | Zbl

[39] N. N. Vorobev, A. V. Chechuev, “O naimenshem zadanii berovskoi formatsii”, Vesn. Vitsebskaga dzyarzh. ŭniv., 2022, no. 3(116), 15–18

[40] A. N. Skiba, N. N. Vorob'ev, “On the lattices of saturated and solubly saturated formations of finite groups”, Southeast Asian Bull. Math., 37:5 (2013), 771–780 | MR | Zbl