Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid
Algebra i logika, Tome 62 (2023) no. 2, pp. 266-296
Voir la notice de l'article provenant de la source Math-Net.Ru
An axiomatizability criterion is found for the class of subdirectly irreducible $S$-acts over a commutative monoid. As a corollary, a number of properties are presented which a commutative monoid should satisfy provided that the class of subdirectly irreducible acts over it is axiomatizable. The question about a complete description of monoids over which the class of subdirectly irreducible acts is axiomatizable remains open even for the case of a commutative monoid.
Keywords:
$S$-act, commutative monoid, subdirectly irreducible $S$-act, axiomatizable class.
@article{AL_2023_62_2_a5,
author = {A. A. Stepanova and E. L. Efremov},
title = {Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid},
journal = {Algebra i logika},
pages = {266--296},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/}
}
TY - JOUR AU - A. A. Stepanova AU - E. L. Efremov TI - Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid JO - Algebra i logika PY - 2023 SP - 266 EP - 296 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/ LA - ru ID - AL_2023_62_2_a5 ER -
A. A. Stepanova; E. L. Efremov. Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid. Algebra i logika, Tome 62 (2023) no. 2, pp. 266-296. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/