@article{AL_2023_62_2_a5,
author = {A. A. Stepanova and E. L. Efremov},
title = {Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid},
journal = {Algebra i logika},
pages = {266--296},
year = {2023},
volume = {62},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/}
}
A. A. Stepanova; E. L. Efremov. Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid. Algebra i logika, Tome 62 (2023) no. 2, pp. 266-296. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/
[1] V. Gould, A. V. Mikhalev, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva svobodnykh, proektivnykh i ploskikh $S$-poligonov”, Fundament. i prikl. matem., 14:7 (2008), 63–110
[2] A. A. Stepanova, “Aksiomatiziruemost i polnota nekotorykh klassov $S$-poligonov”, Algebra i logika, 30:5 (1991), 583–594 | MR | Zbl
[3] V. Gould, “Axiomatisability problems for $S$-systems”, J. Lond. Math. Soc., II. Ser., 35 (1987), 193–201 | DOI | MR
[4] A. V. Mikhalev, E. V. Ovchinnikova, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva regulyarnykh poligonov”, Fundament. i prikl. matem., 10:4 (2004), 107–157 | Zbl
[5] A. A. Stepanova, “Aksiomatiziruemost i modelnaya polnota klassa regulyarnykh poligonov”, Sib. matem. zh., 35:1 (1994), 181–193 | MR | Zbl
[6] P. Kon, Universalnaya algebra, Mir, M., 1968 | MR
[7] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR
[8] I. B. Kozhukhov, A. V. Mikhalev, “Poligony nad polugruppami”, Fundament. i prikl. matem., 23:3 (2020), 141–199
[9] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR