Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid
Algebra i logika, Tome 62 (2023) no. 2, pp. 266-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

An axiomatizability criterion is found for the class of subdirectly irreducible $S$-acts over a commutative monoid. As a corollary, a number of properties are presented which a commutative monoid should satisfy provided that the class of subdirectly irreducible acts over it is axiomatizable. The question about a complete description of monoids over which the class of subdirectly irreducible acts is axiomatizable remains open even for the case of a commutative monoid.
Keywords: $S$-act, commutative monoid, subdirectly irreducible $S$-act, axiomatizable class.
@article{AL_2023_62_2_a5,
     author = {A. A. Stepanova and E. L. Efremov},
     title = {Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid},
     journal = {Algebra i logika},
     pages = {266--296},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/}
}
TY  - JOUR
AU  - A. A. Stepanova
AU  - E. L. Efremov
TI  - Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid
JO  - Algebra i logika
PY  - 2023
SP  - 266
EP  - 296
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/
LA  - ru
ID  - AL_2023_62_2_a5
ER  - 
%0 Journal Article
%A A. A. Stepanova
%A E. L. Efremov
%T Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid
%J Algebra i logika
%D 2023
%P 266-296
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/
%G ru
%F AL_2023_62_2_a5
A. A. Stepanova; E. L. Efremov. Axiomatizability of the class of subdirectly irreducible $S$-acts over a commutative monoid. Algebra i logika, Tome 62 (2023) no. 2, pp. 266-296. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a5/

[1] V. Gould, A. V. Mikhalev, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva svobodnykh, proektivnykh i ploskikh $S$-poligonov”, Fundament. i prikl. matem., 14:7 (2008), 63–110

[2] A. A. Stepanova, “Aksiomatiziruemost i polnota nekotorykh klassov $S$-poligonov”, Algebra i logika, 30:5 (1991), 583–594 | MR | Zbl

[3] V. Gould, “Axiomatisability problems for $S$-systems”, J. Lond. Math. Soc., II. Ser., 35 (1987), 193–201 | DOI | MR

[4] A. V. Mikhalev, E. V. Ovchinnikova, E. A. Palyutin, A. A. Stepanova, “Teoretiko-modelnye svoistva regulyarnykh poligonov”, Fundament. i prikl. matem., 10:4 (2004), 107–157 | Zbl

[5] A. A. Stepanova, “Aksiomatiziruemost i modelnaya polnota klassa regulyarnykh poligonov”, Sib. matem. zh., 35:1 (1994), 181–193 | MR | Zbl

[6] P. Kon, Universalnaya algebra, Mir, M., 1968 | MR

[7] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[8] I. B. Kozhukhov, A. V. Mikhalev, “Poligony nad polugruppami”, Fundament. i prikl. matem., 23:3 (2020), 141–199

[9] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 6-e izd., Fizmatlit, M., 2011 | MR