An explicit basis for $WCP$-globally admissible inference rules
Algebra i logika, Tome 62 (2023) no. 2, pp. 219-246

Voir la notice de l'article provenant de la source Math-Net.Ru

Inference rules are examined which are admissible immediately in all residually finite extensions of $S4$ possessing the weak cocover property. An explicit basis is found for such $WCP$-globally admissible rules. In case of tabular logics, the basis is finite, and for residually finite extensions, the independency of an explicit basis is proved.
Keywords: Kripke frame, Kripke model, admissible inference rule, basis for admissible rules.
@article{AL_2023_62_2_a3,
     author = {V. V. Rimatskii},
     title = {An explicit basis for $WCP$-globally admissible inference rules},
     journal = {Algebra i logika},
     pages = {219--246},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/}
}
TY  - JOUR
AU  - V. V. Rimatskii
TI  - An explicit basis for $WCP$-globally admissible inference rules
JO  - Algebra i logika
PY  - 2023
SP  - 219
EP  - 246
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/
LA  - ru
ID  - AL_2023_62_2_a3
ER  - 
%0 Journal Article
%A V. V. Rimatskii
%T An explicit basis for $WCP$-globally admissible inference rules
%J Algebra i logika
%D 2023
%P 219-246
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/
%G ru
%F AL_2023_62_2_a3
V. V. Rimatskii. An explicit basis for $WCP$-globally admissible inference rules. Algebra i logika, Tome 62 (2023) no. 2, pp. 219-246. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/