An explicit basis for $WCP$-globally admissible inference rules
Algebra i logika, Tome 62 (2023) no. 2, pp. 219-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

Inference rules are examined which are admissible immediately in all residually finite extensions of $S4$ possessing the weak cocover property. An explicit basis is found for such $WCP$-globally admissible rules. In case of tabular logics, the basis is finite, and for residually finite extensions, the independency of an explicit basis is proved.
Keywords: Kripke frame, Kripke model, admissible inference rule, basis for admissible rules.
@article{AL_2023_62_2_a3,
     author = {V. V. Rimatskii},
     title = {An explicit basis for $WCP$-globally admissible inference rules},
     journal = {Algebra i logika},
     pages = {219--246},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/}
}
TY  - JOUR
AU  - V. V. Rimatskii
TI  - An explicit basis for $WCP$-globally admissible inference rules
JO  - Algebra i logika
PY  - 2023
SP  - 219
EP  - 246
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/
LA  - ru
ID  - AL_2023_62_2_a3
ER  - 
%0 Journal Article
%A V. V. Rimatskii
%T An explicit basis for $WCP$-globally admissible inference rules
%J Algebra i logika
%D 2023
%P 219-246
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/
%G ru
%F AL_2023_62_2_a3
V. V. Rimatskii. An explicit basis for $WCP$-globally admissible inference rules. Algebra i logika, Tome 62 (2023) no. 2, pp. 219-246. http://geodesic.mathdoc.fr/item/AL_2023_62_2_a3/

[1] P. Lorenzen, Einführung in die operative Logik und Mathematik, Grundlehren Math. Wiss., 78, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955 | MR

[2] R. Harrop, “Concerning formulas of the types $A\to B\vee C, A\to\exists x B(x)$”, J. Symb. Log., 25:1 (1960), 27–32 | DOI | MR | Zbl

[3] G. E. Mints, “Derivability of admissible rules”, J. Soviet. Math., 6:4 (1976), 417–421 | DOI | Zbl

[4] J. Port, “The deducibilities of S5”, J. Phylos. Logic, 10:1 (1981), 409–422 | DOI | MR | Zbl

[5] H. Friedman, “One hundred and two problems in mathematical logic”, J. Symb. Log., 40 (1975), 113–129 | DOI | MR | Zbl

[6] V. V. Rybakov, “Kriterii dopustimosti pravil vyvoda v modalnoi sisteme $S4$ i intuitsionistskoi logike”, Algebra i logika, 23:5 (1984), 546–572 | MR | Zbl

[7] V. V. Rybakov, Admissibility of logical inference rules, Stud. Logic Found. Math., 136, Elsevier, Amsterdam, 1997 | MR | Zbl

[8] A. I. Tsitkin, “O dopustimykh pravilakh intuitsionistskoi logiki vyskazyvanii”, Matem. sb., 102(144):2 (1977), 314–323 | MR | Zbl

[9] V. V. Rybakov, “Bazisy dopustimykh pravil logik S4 i Int”, Algebra i logika, 24:1 (1985), 87–107 | MR | Zbl

[10] V. V. Rimatskii, “O konechnoi baziruemosti po dopustimosti modalnykh logik shiriny 2”, Algebra i logika, 38:4 (1999), 436–455 | MR

[11] V. V. Rimatskii, “Bazisy dopustimykh pravil $K$-nasyschennykh logik”, Algebra i logika, 47:6 (2008), 750–761 | MR | Zbl

[12] V. V. Rybakov, M. Terziler, V. Rimazki, “A basis in semi-reduced form for the admissible rules of the intuitionistic logic IPC”, Math. Log. Q., 46:2 (2000), 207–218 | 3.0.CO;2-E class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] R. Iemhoff, “On the admissible rules of intuitionistic propositional logic”, J. Symb. Log., 66:1 (2001), 281–294 | DOI | MR | Zbl

[14] R. Iemhoff, “A(nother) characterization of intuitionistic propositional logic”, Ann. Pure Appl. Logic, 113:1–3 (2002), 161–173 | MR | Zbl

[15] V. V. Rybakov, “Construction of an explicit basis for rules admissible in modal system S4”, Math. Log. Q., 47:4 (2001), 441–446 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] E. Jeřábek, “Admissible rules of modal logics”, J. Log. Comput., 15:4 (2005), 411–431 | DOI | MR

[17] E. Jeřábek, “Independent bases of admissible rules”, Log. J. IGPL, 16:3 (2008), 249–267 | DOI | MR

[18] V. V. Rimatskii, “Yavnyi bazis dopustimykh pravil vyvoda logik konechnoi shiriny”, Zhurn. SFU, Ser. Matem. i fiz., 1:1 (2008), 85–93

[19] O. V. Lukina, V. V. Rimatskii, “Yavnyi bazis dopustimykh pravil vyvoda tablichnoi logiki”, Vestnik KGU. Fiz.-matem. n., 2006, no. 1, 68–71

[20] V. V. Rimatskii, V. R. Kiyatkin, “Nezavisimyi bazis dopustimykh pravil vyvoda predtablichnykh logik i ikh rasshirenii”, Sib. elektron. matem. izv., 10 (2013), 79–89 http://semr.math.nsc.ru/v10/p79-89.pdf | MR | Zbl

[21] V. V. Rimatski, V. V. Rybakov, “A note on globally admissible inference rules for modal and superintuitionistic logics”, Bull. Sect. Log., Univ. Łódź, Dep. Log., 34:2 (2005), 93–99 | MR

[22] V.V. Rybakov, M. Terziler, C. Genzer, “An essay on unification and inference rules for modal logics”, Bull. Sect. Log., Univ. Łódź, Dep. Log., 28:3 (1999), 145–157 | MR | Zbl