Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group
Algebra i logika, Tome 62 (2023) no. 1, pp. 71-75
Voir la notice de l'article provenant de la source Math-Net.Ru
For a finite group $G$, the spectrum is the set $\omega(G)$ of element orders of the group $G$. The spectrum of $G$ is closed under divisibility and is therefore uniquely determined by the set $\mu(G)$ consisting of elements of $\omega(G)$ that are maximal with respect to divisibility. We prove that a finite group isospectral to ${\rm Aut}(J_2)$ is unsolvable.
Keywords:
spectrum
Mots-clés : automorphism group, Janko group.
Mots-clés : automorphism group, Janko group.
@article{AL_2023_62_1_a4,
author = {A. Kh. Zhurtov and D. V. Lytkina and V. D. Mazurov},
title = {Unsolvability of finite groups isospectral to the automorphism group of the second sporadic {Janko} group},
journal = {Algebra i logika},
pages = {71--75},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/}
}
TY - JOUR AU - A. Kh. Zhurtov AU - D. V. Lytkina AU - V. D. Mazurov TI - Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group JO - Algebra i logika PY - 2023 SP - 71 EP - 75 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/ LA - ru ID - AL_2023_62_1_a4 ER -
%0 Journal Article %A A. Kh. Zhurtov %A D. V. Lytkina %A V. D. Mazurov %T Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group %J Algebra i logika %D 2023 %P 71-75 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/ %G ru %F AL_2023_62_1_a4
A. Kh. Zhurtov; D. V. Lytkina; V. D. Mazurov. Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group. Algebra i logika, Tome 62 (2023) no. 1, pp. 71-75. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/