Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group
Algebra i logika, Tome 62 (2023) no. 1, pp. 71-75

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite group $G$, the spectrum is the set $\omega(G)$ of element orders of the group $G$. The spectrum of $G$ is closed under divisibility and is therefore uniquely determined by the set $\mu(G)$ consisting of elements of $\omega(G)$ that are maximal with respect to divisibility. We prove that a finite group isospectral to ${\rm Aut}(J_2)$ is unsolvable.
Keywords: spectrum
Mots-clés : automorphism group, Janko group.
@article{AL_2023_62_1_a4,
     author = {A. Kh. Zhurtov and D. V. Lytkina and V. D. Mazurov},
     title = {Unsolvability of finite groups isospectral to the automorphism group of the second sporadic {Janko} group},
     journal = {Algebra i logika},
     pages = {71--75},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/}
}
TY  - JOUR
AU  - A. Kh. Zhurtov
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group
JO  - Algebra i logika
PY  - 2023
SP  - 71
EP  - 75
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/
LA  - ru
ID  - AL_2023_62_1_a4
ER  - 
%0 Journal Article
%A A. Kh. Zhurtov
%A D. V. Lytkina
%A V. D. Mazurov
%T Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group
%J Algebra i logika
%D 2023
%P 71-75
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/
%G ru
%F AL_2023_62_1_a4
A. Kh. Zhurtov; D. V. Lytkina; V. D. Mazurov. Unsolvability of finite groups isospectral to the automorphism group of the second sporadic Janko group. Algebra i logika, Tome 62 (2023) no. 1, pp. 71-75. http://geodesic.mathdoc.fr/item/AL_2023_62_1_a4/