Pre-minimal pairs and homogeneous valuations
Algebra i logika, Tome 61 (2022) no. 5, pp. 541-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

We offer for consideration and study the concept of a pre-minimal pair. Also we examine extensions of valuations of a field $F$ to valuations of the rational function field $F(x)$ in one variable.
Keywords: pre-mimimal pair, valuation of field.
@article{AL_2022_61_5_a1,
     author = {Yu. L. Ershov},
     title = {Pre-minimal pairs and homogeneous valuations},
     journal = {Algebra i logika},
     pages = {541--551},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_5_a1/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Pre-minimal pairs and homogeneous valuations
JO  - Algebra i logika
PY  - 2022
SP  - 541
EP  - 551
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_5_a1/
LA  - ru
ID  - AL_2022_61_5_a1
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Pre-minimal pairs and homogeneous valuations
%J Algebra i logika
%D 2022
%P 541-551
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_5_a1/
%G ru
%F AL_2022_61_5_a1
Yu. L. Ershov. Pre-minimal pairs and homogeneous valuations. Algebra i logika, Tome 61 (2022) no. 5, pp. 541-551. http://geodesic.mathdoc.fr/item/AL_2022_61_5_a1/

[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauch. kniga, Novosibirsk, 2000

[2] Sudesh K. Khanduja, N. Popescu, K. W. Roggenkamp, “On minimal pairs and residually transcendental extensions of valuations”, Mathematika, 49:1/2 (2002), 93–106 | MR | Zbl

[3] Yu. L. Ershov, “Obobscheniya lemmy Genzelya i metod blizhaishego kornya”, Algebra i logika, 50:6 (2011), 701–706