Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2022_61_4_a4, author = {A. V. Kislitsin}, title = {Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$}, journal = {Algebra i logika}, pages = {461--468}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2022_61_4_a4/} }
A. V. Kislitsin. Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$. Algebra i logika, Tome 61 (2022) no. 4, pp. 461-468. http://geodesic.mathdoc.fr/item/AL_2022_61_4_a4/
[1] Yu. P. Razmyslov, “O konechnoi baziruemosti tozhdestv matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12:1 (1973), 83–113 | MR
[2] I. V. Lvov, “Konechnomernye algebry s beskonechnymi bazisami tozhdestv”, Sib. matem. zh., 19:1 (1978), 91–99 | MR | Zbl
[3] I. M. Isaev, “Suschestvenno beskonechno baziruemye mnogoobraziya algebr”, Sib. matem. zh., 30:6 (1989), 75–77 | MR | Zbl
[4] I. M. Isaev, A. V. Kislitsin, “Tozhdestva vektornykh prostranstv i primery konechnomernykh lineinykh algebr, ne imeyuschikh konechnogo bazisa tozhdestv”, Algebra i logika, 52:4 (2013), 435–460 | MR | Zbl
[5] I. M. Isaev, A. V. Kislitsin, “O tozhdestvakh vektornykh prostranstv, vlozhennykh v konechnye assotsiativnye algebry”, Vestn. NGU. Ser. matem., mekh., inform., 15:3 (2015), 69–77 | Zbl
[6] A. Tarski, “Equationally complete rings and relation algebras”, Nederl. Akad. Wet., Proc., Ser. A, 59:1 (1956), 39–46 | MR | Zbl
[7] A. V. Kislitsin, “O minimalnykh nenulevykh $L$-mnogoobraziyakh vektornykh prostranstv”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (19–22 noyabrya 2018, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2018, 154 http://www.math.nsc.ru/conference/malmeet/18/malmeet18.pdf