Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$
Algebra i logika, Tome 61 (2022) no. 4, pp. 461-468.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a complete description of minimal nonzero $L$-varieties of multiplicative vector spaces over the field $\mathbb Z_2$.
Mots-clés : multiplicative vector space
Keywords: identity of vector space, $L$-variety, minimal nonzero $L$-variety (atom).
@article{AL_2022_61_4_a4,
     author = {A. V. Kislitsin},
     title = {Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$},
     journal = {Algebra i logika},
     pages = {461--468},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_4_a4/}
}
TY  - JOUR
AU  - A. V. Kislitsin
TI  - Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$
JO  - Algebra i logika
PY  - 2022
SP  - 461
EP  - 468
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_4_a4/
LA  - ru
ID  - AL_2022_61_4_a4
ER  - 
%0 Journal Article
%A A. V. Kislitsin
%T Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$
%J Algebra i logika
%D 2022
%P 461-468
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_4_a4/
%G ru
%F AL_2022_61_4_a4
A. V. Kislitsin. Minimal nonzero $L$-varieties of vector spaces over the field ${\mathbb Z}_2$. Algebra i logika, Tome 61 (2022) no. 4, pp. 461-468. http://geodesic.mathdoc.fr/item/AL_2022_61_4_a4/

[1] Yu. P. Razmyslov, “O konechnoi baziruemosti tozhdestv matrichnoi algebry vtorogo poryadka nad polem kharakteristiki nul”, Algebra i logika, 12:1 (1973), 83–113 | MR

[2] I. V. Lvov, “Konechnomernye algebry s beskonechnymi bazisami tozhdestv”, Sib. matem. zh., 19:1 (1978), 91–99 | MR | Zbl

[3] I. M. Isaev, “Suschestvenno beskonechno baziruemye mnogoobraziya algebr”, Sib. matem. zh., 30:6 (1989), 75–77 | MR | Zbl

[4] I. M. Isaev, A. V. Kislitsin, “Tozhdestva vektornykh prostranstv i primery konechnomernykh lineinykh algebr, ne imeyuschikh konechnogo bazisa tozhdestv”, Algebra i logika, 52:4 (2013), 435–460 | MR | Zbl

[5] I. M. Isaev, A. V. Kislitsin, “O tozhdestvakh vektornykh prostranstv, vlozhennykh v konechnye assotsiativnye algebry”, Vestn. NGU. Ser. matem., mekh., inform., 15:3 (2015), 69–77 | Zbl

[6] A. Tarski, “Equationally complete rings and relation algebras”, Nederl. Akad. Wet., Proc., Ser. A, 59:1 (1956), 39–46 | MR | Zbl

[7] A. V. Kislitsin, “O minimalnykh nenulevykh $L$-mnogoobraziyakh vektornykh prostranstv”, Mezhd. konf. "‘Maltsevskie chteniya"’, Tez. dokl. (19–22 noyabrya 2018, Novosibirsk), IM SO RAN i NGU, Novosibirsk, 2018, 154 http://www.math.nsc.ru/conference/malmeet/18/malmeet18.pdf