Boolean algebras autostable relative to $n$-decidable presentations
Algebra i logika, Tome 61 (2022) no. 4, pp. 443-460.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an algebraic description of Boolean algebras autostable relative to $n$-decidable presentations. Also, autostable $I_{\lambda,\mu}$-algebras are described.
Keywords: Boolean algebra, computable structure, prime model, autostability, computable categoricity.
@article{AL_2022_61_4_a3,
     author = {M. N. Gaskova},
     title = {Boolean algebras autostable relative to $n$-decidable presentations},
     journal = {Algebra i logika},
     pages = {443--460},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_4_a3/}
}
TY  - JOUR
AU  - M. N. Gaskova
TI  - Boolean algebras autostable relative to $n$-decidable presentations
JO  - Algebra i logika
PY  - 2022
SP  - 443
EP  - 460
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_4_a3/
LA  - ru
ID  - AL_2022_61_4_a3
ER  - 
%0 Journal Article
%A M. N. Gaskova
%T Boolean algebras autostable relative to $n$-decidable presentations
%J Algebra i logika
%D 2022
%P 443-460
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_4_a3/
%G ru
%F AL_2022_61_4_a3
M. N. Gaskova. Boolean algebras autostable relative to $n$-decidable presentations. Algebra i logika, Tome 61 (2022) no. 4, pp. 443-460. http://geodesic.mathdoc.fr/item/AL_2022_61_4_a3/

[1] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[2] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl

[3] D. E. Palchunov, A. V. Trofimov, A. I. Turko, “Avtoustoichivost bulevykh algebr s vydelennymi idealami otnositelno silnykh konstruktivizatsii”, Sib. matem. zh., 56:3 (2015), 617–628 | MR | Zbl

[4] E. B. Fokina, S. S. Goncharov, V. Kharizanova, O. V. Kudinov, D. Turetski, “Indeksnye mnozhestva $n$-razreshimykh struktur, kategorichnykh otnositelno $m$-razreshimykh predstavlenii”, Algebra i logika, 54:4 (2015), 520–528 | MR | Zbl

[5] J. B. Remmel, “Recursive Boolean algebras”, Handbook of Boolean algebras, v. 3, eds. J. D. Monk, R. Bonnet, North-Holland, Amsterdam etc., 1989, 1097–1165 | MR

[6] S. S. Goncharov, Schetnye bulevy algebry i razreshimost (Sibirskaya shkola algebry i logiki), Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996

[7] P. E. Alaev, “Computably categorical Boolean algebras enriched by ideals and atoms”, Ann. Pure Appl. Logic, 163:5 (2012), 485–499 | DOI | MR | Zbl

[8] P. E. Alaev, “Avtoustoichivost atomno-idealnykh obogaschenii vychislimykh bulevykh algebr”, DAN, 433:2 (2010), 151–153 | MR | Zbl

[9] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977

[10] J. Mead, “Recursive prime models for Boolean algebras”, Colloq. Math., 41 (1979), 25–33 | DOI | MR | Zbl