Полурешётки Роджерса с наименьшим и наибольшим элементами в иерархии Ершова
Algebra i logika, Tome 61 (2022) no. 3, pp. 334-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2022_61_3_a3,
     author = {S. A. Badaev and S. S. Goncharov},
     title = {{\CYRP}{\cyro}{\cyrl}{\cyru}{\cyrr}{\cyre}{\cyrsh}{\cyryo}{\cyrt}{\cyrk}{\cyri} {{\CYRR}{\cyro}{\cyrd}{\cyrzh}{\cyre}{\cyrr}{\cyrs}{\cyra}} {\cyrs} {\cyrn}{\cyra}{\cyri}{\cyrm}{\cyre}{\cyrn}{\cyrsftsn}{\cyrsh}{\cyri}{\cyrm} {\cyri} {\cyrn}{\cyra}{\cyri}{\cyrb}{\cyro}{\cyrl}{\cyrsftsn}{\cyrsh}{\cyri}{\cyrm} {\cyrerev}{\cyrl}{\cyre}{\cyrm}{\cyre}{\cyrn}{\cyrt}{\cyra}{\cyrm}{\cyri} {\cyrv} {\cyri}{\cyre}{\cyrr}{\cyra}{\cyrr}{\cyrh}{\cyri}{\cyri} {{\CYRE}{\cyrr}{\cyrsh}{\cyro}{\cyrv}{\cyra}}},
     journal = {Algebra i logika},
     pages = {334--340},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_3_a3/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - S. S. Goncharov
TI  - Полурешётки Роджерса с наименьшим и наибольшим элементами в иерархии Ершова
JO  - Algebra i logika
PY  - 2022
SP  - 334
EP  - 340
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_3_a3/
LA  - ru
ID  - AL_2022_61_3_a3
ER  - 
%0 Journal Article
%A S. A. Badaev
%A S. S. Goncharov
%T Полурешётки Роджерса с наименьшим и наибольшим элементами в иерархии Ершова
%J Algebra i logika
%D 2022
%P 334-340
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_3_a3/
%G ru
%F AL_2022_61_3_a3
S. A. Badaev; S. S. Goncharov. Полурешётки Роджерса с наименьшим и наибольшим элементами в иерархии Ершова. Algebra i logika, Tome 61 (2022) no. 3, pp. 334-340. http://geodesic.mathdoc.fr/item/AL_2022_61_3_a3/

[1] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR

[2] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[3] S. S. Goncharov, A. Sorbi, “Obobschenno-vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[4] S. S. Goncharov, S. Lempp, D. R. Solomon, “Fridbergovskie numeratsii semeistv $n$-vychislimo perechislimykh mnozhestv”, Algebra i logika, 41:2 (2002), 143–154 | MR | Zbl

[5] S. A. Badaev, S. S. Goncharov, “O polureshetkakh Rodzhersa semeistv arifmeticheskikh mnozhestv”, Algebra i logika, 40:5 (2001), 507–522 | MR | Zbl

[6] S. A. Badaev, S. S. Goncharov, S. Yu. Podzorov, A. Sorbi, “Algebraic properties of Rogers semilattices of arithmetical numberings”, Computability and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publishers, New York, 2003, 45–77 | DOI | MR

[7] S. A. Badaev, S. S. Goncharov, A. Corbi, “Tipy izomorfizmov polureshetok Rodzhersa semeistv iz razlichnykh urovnei arifmeticheskoi ierarkhii”, Algebra i logika, 45:6 (2006), 637–654 | MR | Zbl

[8] Zh. T. Talasbaeva, “O pozitivnykh numeratsiyakh semeistv mnozhestv ierarkhii Ershova”, Algebra i logika, 42:6 (2003), 737–746 | MR | Zbl

[9] S. A. Badaev, Zh. T. Talasbaeva, “Computable numberings in the hierarchy of Ershov”, Mathematical logic in Asia, Proc. 9th Asian logic conf. (Novosibirsk, Russia, August 16–19, 2005), eds. S. S. Goncharov et al., World Scientific, NJ, 2006, 17–30 | DOI | MR | Zbl

[10] S. A. Badaev, S. Lempp, “A decomposition of the Rogers semilattice of a family of d.c.e. sets”, J. Symb. Log., 74:2 (2009), 618–640 | DOI | MR | Zbl

[11] M. Manat, A. Sorbi, “Pozitivnye nerazreshimye numeratsii v ierarkhii Ershova”, Algebra i logika, 50:6 (2011), 759–780 | MR

[12] S. A. Badaev, M. Manat, A. Sorbi, “Rogers semilattices of families of two embedded sets in the Ershov hierarchy”, Math. Log. Q., 58:4/5 (2012), 366–376 | DOI | MR | Zbl

[13] K. Sh. Abeshev, “On the existence of universal numberings for finite families of d.c.e. sets”, Math. Log. Q., 60:3 (2014), 161–167 | DOI | MR | Zbl

[14] K. Sh. Abeshev, S. A. Badaev, M. Mustafa, “Semeistva bez minimalnykh numeratsii”, Algebra i logika, 53:4 (2014), 427–450 | MR | Zbl

[15] S. A. Badaev, M. Manat, A. Sorbi, “Friedberg numberings in the Ershov hierarchy”, Arch. Math. Logic, 54:1/2 (2015), 59–73 | DOI | MR | Zbl

[16] B. S. Kalmurzaev, “O vlozhimosti polureshetki $\mathbf{L^0_m}$ v polureshetki Rodzhersa”, Algebra i logika, 55:3 (2016), 328–340 | MR | Zbl

[17] M. V. Dorzhieva, “Vychislimye numeratsii semeistv beskonechnykh mnozhestv”, Algebra i logika, 58:3 (2019), 334–343 | MR | Zbl

[18] I. Herbert, S. Jain, S. Lempp, M. Mustafa, F. Stephan, “Reductions between types of numberings”, Ann. Pure Appl. Logic, 170:12 (2019), 102716, 1–25 | DOI | MR

[19] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl

[20] A. V. Khutoretskii, “O moschnosti verkhnei polureshetki vychislimykh numeratsii”, Algebra i logika, 10:5 (1971), 561–569 | MR