Многоагентные логики с динамическими отношениями достижимости, проективные унификаторы
Algebra i logika, Tome 61 (2022) no. 1, pp. 111-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2022_61_1_a6,
     author = {V. V. Rybakov},
     title = {{\CYRM}{\cyrn}{\cyro}{\cyrg}{\cyro}{\cyra}{\cyrg}{\cyre}{\cyrn}{\cyrt}{\cyrn}{\cyrery}{\cyre} {\cyrl}{\cyro}{\cyrg}{\cyri}{\cyrk}{\cyri} {\cyrs} {\cyrd}{\cyri}{\cyrn}{\cyra}{\cyrm}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrm}{\cyri} {\cyro}{\cyrt}{\cyrn}{\cyro}{\cyrsh}{\cyre}{\cyrn}{\cyri}{\cyrya}{\cyrm}{\cyri} {\cyrd}{\cyro}{\cyrs}{\cyrt}{\cyri}{\cyrzh}{\cyri}{\cyrm}{\cyro}{\cyrs}{\cyrt}{\cyri}, {\cyrp}{\cyrr}{\cyro}{\cyre}{\cyrk}{\cyrt}{\cyri}{\cyrv}{\cyrn}{\cyrery}{\cyre} {\cyru}{\cyrn}{\cyri}{\cyrf}{\cyri}{\cyrk}{\cyra}{\cyrt}{\cyro}{\cyrr}{\cyrery}},
     journal = {Algebra i logika},
     pages = {111--118},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_1_a6/}
}
TY  - JOUR
AU  - V. V. Rybakov
TI  - Многоагентные логики с динамическими отношениями достижимости, проективные унификаторы
JO  - Algebra i logika
PY  - 2022
SP  - 111
EP  - 118
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_1_a6/
LA  - ru
ID  - AL_2022_61_1_a6
ER  - 
%0 Journal Article
%A V. V. Rybakov
%T Многоагентные логики с динамическими отношениями достижимости, проективные унификаторы
%J Algebra i logika
%D 2022
%P 111-118
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_1_a6/
%G ru
%F AL_2022_61_1_a6
V. V. Rybakov. Многоагентные логики с динамическими отношениями достижимости, проективные унификаторы. Algebra i logika, Tome 61 (2022) no. 1, pp. 111-118. http://geodesic.mathdoc.fr/item/AL_2022_61_1_a6/

[1] F. Baader, R. Küsters, “Unification in a description logic with transitive closure of roles”, Logic for programming, artificial intelligence, and reasoning, 8th int. conf., LPAR 2001 (Havana, Cuba, December 3-7, 2001), Lect. Notes Comput. Sci., 2250, eds. R. Nieuwenhuis et al., Springer, Berlin, 2001, 217–232

[2] F. Baader, P. Narendran, “Unification of concept terms in description logics”, J. Symb. Comput., 31:3 (2001), 277–305

[3] F. Baader, W. Snyder, “Unification theory”, Handbook of automated reasoning, In 2 vols., eds. A. Robinson et al., North-Holland/Elsevier, Amsterdam, 2001, 445–533

[4] V. V. Rybakov, “Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus”, Ann. Pure Appl. Logic, 50:1 (1990), 71–106

[5] V. V. Rybakov, “Rules of inference with parameters for intuitionistic logic”, J. Symb. Log., 57:3 (1992), 912–923

[6] S. Ghilardi, “Unification through projectivity”, J. Log. Comput., 7:6 (1997), 733–752

[7] S. Ghilardi, “Unification, finite duality and projectivity in varieties of Heyting algebras”, Ann. Pure Appl. Logic, 127:1–3 (2004), 99–115

[8] V. V. Rybakov, “Vremennye multiagentnye logiki s multioznachivaniyami”, Sib. matem. zh., 59:4 (2018), 897–911

[9] V. V. Rybakov, “Branching time agents logic, satisfiability problem by rules in reduced form”, Sib. elektron. matem. izv., 16 (2019), 1158–1170 http://semr.math.nsc.ru/v16/p1158-1170.pdf

[10] V. V. Rybakov, “Projective formulas and unification in linear temporal logic ${\mathrm{LTL}}_U$”, Log. J. IGPL, 22:4 (2014), 665–672

[11] W. Dzik, P. Wojtylak, “Projective unification in modal logic”, Log. J. IGPL, 20:1 (2012), 121–153

[12] V. V. Rybakov, “Logical consecutions in discrete linear temporal logic”, J. Symb. Log., 70:4 (2005), 1137–1149

[13] V. V. Rybakov, “Linear temporal logic with until and next, logical consecutions”, Ann. Pure Appl. Logic, 155:1 (2008), 32–45

[14] V. V. Rybakov, “Intranzitivnye vremennye mnogoagentnye logiki, informatsiya i znanie, razreshimost”, Sib. matem. zh., 58:5 (2017), 1128–1143