Automorphisms of the category of free finitely generated algebras
Algebra i logika, Tome 61 (2022) no. 1, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let an arbitrary variety of algebras and the category of all free finitely generated algebras in that variety be given. In universal algebraic geometry over an arbitrary variety of algebras, the group of automorphisms of the category of free finitely generated algebras plays an important role. This paper is first in a series where we will deal with the group mentioned. Here we describe properties of automorphisms of the category of all free finitely generated algebras and distinguish two important subgroups, namely, the subgroup of inner automorphisms and the subgroup of strongly stable automorphisms.
Keywords: variety of algebras, category of free finitely generated algebras, universal algebraic geometry over arbitrary variety of algebras, group of automorphisms.
@article{AL_2022_61_1_a0,
     author = {E. V. Aladova},
     title = {Automorphisms of the category of free finitely generated algebras},
     journal = {Algebra i logika},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2022_61_1_a0/}
}
TY  - JOUR
AU  - E. V. Aladova
TI  - Automorphisms of the category of free finitely generated algebras
JO  - Algebra i logika
PY  - 2022
SP  - 3
EP  - 22
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2022_61_1_a0/
LA  - ru
ID  - AL_2022_61_1_a0
ER  - 
%0 Journal Article
%A E. V. Aladova
%T Automorphisms of the category of free finitely generated algebras
%J Algebra i logika
%D 2022
%P 3-22
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2022_61_1_a0/
%G ru
%F AL_2022_61_1_a0
E. V. Aladova. Automorphisms of the category of free finitely generated algebras. Algebra i logika, Tome 61 (2022) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/AL_2022_61_1_a0/

[1] Proc. Steklov Inst. Math., 242 (2003), 165–196

[2] B. Plotkin, “Seven lectures on universal algebraic geometry”, Groups, algebras and identities, Research workshop of the Israel Sci. Found. "‘Groups, algebras and identities"’. In honor of Boris Plotkin's 90th birthday (Bar-Ilan Univ. and The Hebrew Univ. Jerusalem, Israel, March 20–24, 2016), Contemp. Math., 726, ed. E. Plotkin, Am. Math. Soc., Providence, RI; Bar-Ilan Univ., Ramat Gan, 2019, 143–215

[3] B. Plotkin, E. Plotkin, “Multi-sorted logic and logical geometry: some problems”, Demonstr. Math., 48:4 (2015), 577–619

[4] E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, Algebraicheskaya geometriya nad algebraicheskimi sistemami, Izd-vo SO RAN, Novosibirsk, 2016

[5] B. I. Plotkin, “Nekotorye ponyatiya algebraicheskoi geometrii v universalnoi algebre”, Algebra i analiz, 9:4 (1997), 224–248

[6] R. Göbel, S. Shelah, “Radicals and Plotkin's problem concerning geometrically equivalent groups”, Proc. Am. Math. Soc., 130:3 (2002), 673–674

[7] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276

[8] Y. Katsov, R. Lipyanski, B. Plotkin, “Automorphisms of categories of free modules, free semimodules, and free Lie modules”, Commun. Algebra, 35:3 (2007), 931–952

[9] G. Mashevitzky, B. Plotkin, E. Plotkin, “Automorphisms of categories of free algebras of varieties”, Electron. Res. Announc. Am. Math. Soc., 8 (2002), 1–10

[10] G. Mashevitzky, B. Plotkin, E. Plotkin, “Automorphisms of the category of free Lie algebras”, J. Algebra, 282:2 (2004), 490–512

[11] G. Mashevitzky, B. M. Schein, G. I. Zhitomirski, “Automorphisms of the endomorphism semigroup of a free inverse semigroup”, Commun. Algebra, 34:10 (2006), 3569–3584

[12] I. Shestakov, A. Tsurkov, “Automorphic equivalence of the representations of Lie algebras”, Algebra Discret. Math., 15:1 (2013), 96–126

[13] A. Tsurkov, “Automorphic equivalence of many-sorted algebras”, Appl. Categ. Struct., 24:3 (2016), 209–240

[14] S. Mac Lane, Categories for the working mathematician, Grad. Texts Math., 5, Springer-Verlag, New York–Heidelberg–Berlin, 1971

[15] F. Kasch, Modules and rings, Lond. Math. Soc. Monogr., 17, Academic Press, London-New York etc., 1982

[16] P. M. Cohn, “Some remarks on the invariant basis property”, Topology, 5 (1966), 215–228

[17] B. Plotkin, G. Zhitomirski, “Automorphisms of categories of free algebras of some varieties”, J. Algebra, 306:2 (2006), 344–367

[18] A. Tsurkov, “Automorphic equivalence of algebras”, Int. J. Algebra Comput., 17:5/6 (2007), 1263–1271