The homology of the lamplighter Lie algebra
Algebra i logika, Tome 60 (2021) no. 6, pp. 636-646.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the associated Lie algebra of the Mal'tsev $\mathbb{Q}$-completion of the lamplighter group is the pronilpotent completion of the lamplighter Lie algebra. It is also shown that the homology of this completed Lie algebra is of uncountable dimension in each degree.
Keywords: homology of Lie algebras, Mal'tsev completion, lamplighter Lie algebra, lamplighter group.
@article{AL_2021_60_6_a7,
     author = {Y. F\'elix and A. Murillo},
     title = {The homology of the lamplighter {Lie} algebra},
     journal = {Algebra i logika},
     pages = {636--646},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a7/}
}
TY  - JOUR
AU  - Y. Félix
AU  - A. Murillo
TI  - The homology of the lamplighter Lie algebra
JO  - Algebra i logika
PY  - 2021
SP  - 636
EP  - 646
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_6_a7/
LA  - ru
ID  - AL_2021_60_6_a7
ER  - 
%0 Journal Article
%A Y. Félix
%A A. Murillo
%T The homology of the lamplighter Lie algebra
%J Algebra i logika
%D 2021
%P 636-646
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_6_a7/
%G ru
%F AL_2021_60_6_a7
Y. Félix; A. Murillo. The homology of the lamplighter Lie algebra. Algebra i logika, Tome 60 (2021) no. 6, pp. 636-646. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a7/

[1] S. O. Ivanov, R. Mikhailov, “A finite $\mathbb Q$-bad space”, Geom. Topol., 23:3 (2019), 1237–1249 | DOI | MR | Zbl

[2] S. O. Ivanov, R. Mikhailov, A. Zaikovskii, “Homological properties of parafree Lie algebras”, J. Algebra, 560 (2020), 1092–1106 | DOI | MR | Zbl

[3] Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory II, World Scientific, Hackensack, NJ, 2015 | MR | Zbl

[4] A. I. Maltsev, “Ob odnom klasse odnorodnykh prostranstv”, Izv. AH SSSR. Ser. matem., 13:1 (1949), 9–32 | Zbl

[5] D. Quillen, “Rational homotopy theory”, Ann. of Math. (2), 90 (1969), 205–295 | DOI | MR | Zbl

[6] Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Grad. Texts Math., 205, Springer, New York, NY, 2001 | DOI | MR | Zbl

[7] J.-P. Serre, Lie algebras and Lie groups, 1964 lectures given at Harvard University, W. A. Benjamin, Inc., New York-Amsterdam, 1965 | MR | Zbl

[8] U. Buijs, Y. Félix, A. Murillo, D. Tanré, Lie models in topology, Prog. Math., 335, Birkhäuser, Cham, 2020 | DOI | MR | Zbl