Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_6_a7, author = {Y. F\'elix and A. Murillo}, title = {The homology of the lamplighter {Lie} algebra}, journal = {Algebra i logika}, pages = {636--646}, publisher = {mathdoc}, volume = {60}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a7/} }
Y. Félix; A. Murillo. The homology of the lamplighter Lie algebra. Algebra i logika, Tome 60 (2021) no. 6, pp. 636-646. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a7/
[1] S. O. Ivanov, R. Mikhailov, “A finite $\mathbb Q$-bad space”, Geom. Topol., 23:3 (2019), 1237–1249 | DOI | MR | Zbl
[2] S. O. Ivanov, R. Mikhailov, A. Zaikovskii, “Homological properties of parafree Lie algebras”, J. Algebra, 560 (2020), 1092–1106 | DOI | MR | Zbl
[3] Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory II, World Scientific, Hackensack, NJ, 2015 | MR | Zbl
[4] A. I. Maltsev, “Ob odnom klasse odnorodnykh prostranstv”, Izv. AH SSSR. Ser. matem., 13:1 (1949), 9–32 | Zbl
[5] D. Quillen, “Rational homotopy theory”, Ann. of Math. (2), 90 (1969), 205–295 | DOI | MR | Zbl
[6] Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Grad. Texts Math., 205, Springer, New York, NY, 2001 | DOI | MR | Zbl
[7] J.-P. Serre, Lie algebras and Lie groups, 1964 lectures given at Harvard University, W. A. Benjamin, Inc., New York-Amsterdam, 1965 | MR | Zbl
[8] U. Buijs, Y. Félix, A. Murillo, D. Tanré, Lie models in topology, Prog. Math., 335, Birkhäuser, Cham, 2020 | DOI | MR | Zbl