Groups saturated with finite Frobenius groups with complements of even order
Algebra i logika, Tome 60 (2021) no. 6, pp. 569-574.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem stating the following. Let $G$ be a periodic group saturated with finite Frobenius groups with complements of even order, and let $i$ be an involution of $G$. If, for some elements $a,b\in G$ with the condition $|a|\cdot|b|>4$, all subgroups $\langle a,b^g\rangle$, where $g\in G$, are finite, then $G=A\leftthreetimes C_G(i)$ is a Frobenius group with Abelian kernel $A$ and complement $C_G(i)$ whose elementary Abelian subgroups are all cyclic.
Keywords: groups saturated with groups
Mots-clés : Frobenius group.
@article{AL_2021_60_6_a3,
     author = {B. E. Durakov},
     title = {Groups saturated with finite {Frobenius} groups with complements of even order},
     journal = {Algebra i logika},
     pages = {569--574},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_6_a3/}
}
TY  - JOUR
AU  - B. E. Durakov
TI  - Groups saturated with finite Frobenius groups with complements of even order
JO  - Algebra i logika
PY  - 2021
SP  - 569
EP  - 574
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_6_a3/
LA  - ru
ID  - AL_2021_60_6_a3
ER  - 
%0 Journal Article
%A B. E. Durakov
%T Groups saturated with finite Frobenius groups with complements of even order
%J Algebra i logika
%D 2021
%P 569-574
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_6_a3/
%G ru
%F AL_2021_60_6_a3
B. E. Durakov. Groups saturated with finite Frobenius groups with complements of even order. Algebra i logika, Tome 60 (2021) no. 6, pp. 569-574. http://geodesic.mathdoc.fr/item/AL_2021_60_6_a3/

[1] A. K. Shlepkin, “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi podgruppami”, Matem. tr., 1:1 (1998), 129–138 | MR | Zbl

[2] A. A. Shlepkin, I. V. Sabodakh, “On two properties of Shunkov group”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 35 (2021), 103–119 | MR | Zbl

[3] A. A. Shlepkin, “Groups with a strongly embedded subgroup saturated with finite simple non-abelian groups”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 31 (2020), 132–141 | MR | Zbl

[4] V. I. Senashov, “On periodic groups of Shunkov with the Chernikov centralizers of involutions”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 32 (2020), 101–117 | MR | Zbl

[5] A. I. Sozutov, N. M. Suchkov, N. G. Suchkova, Beskonechnye gruppy s involyutsiyami, Sib. federal. un-t, Krasnoyarsk, 2011

[6] A. M. Popov, A. I. Sozutov, V. P. Shunkov, Gruppy s sistemami frobeniusovykh podgrupp, IPTs KGTU, Krasnoyarsk, 2004

[7] A. I. Starostin, “O gruppakh Frobeniusa”, Ukr. matem. zh., 23:5 (1971), 629–639 | MR | Zbl

[8] B. E. Durakov, A. I. Sozutov, “On periodic groups saturated with finite Frobenius groups”, Izv. Irkutskogo gos. un-ta. Ser. Matem., 35 (2021), 73–86 | MR | Zbl

[9] A. I. Sozutov, “O stroenii neinvariantnogo mnozhitelya v nekotorykh gruppakh Frobeniusa”, Sib. matem. zh., 35:4 (1994), 893–901 | MR | Zbl