Bruhat decomposition for carpet subgroups of Chevalley groups over fields
Algebra i logika, Tome 60 (2021) no. 5, pp. 497-509.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for a Bruhat decomposition to exist in a carpet subgroup of the Chevalley group over a field defined by an irreducible closed carpet of additive subgroups are established. It turns out that carpet subgroups, which admit the Bruhat decomposition and are distinct from Chevalley groups, are exhausted by groups lying between Chevalley groups of types $B_l$, $C_l$, $F_4$ or $G_2$ over various imperfect fields of exceptional characteristics $2$ or $3$, respectively, of which the larger field is an algebraic extension of the smaller field.
Keywords: Bruhat decomposition, Chevalley group, carpet subgroup.
@article{AL_2021_60_5_a2,
     author = {Ya. N. Nuzhin and A. V. Stepanov},
     title = {Bruhat decomposition for carpet subgroups of {Chevalley} groups over fields},
     journal = {Algebra i logika},
     pages = {497--509},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_5_a2/}
}
TY  - JOUR
AU  - Ya. N. Nuzhin
AU  - A. V. Stepanov
TI  - Bruhat decomposition for carpet subgroups of Chevalley groups over fields
JO  - Algebra i logika
PY  - 2021
SP  - 497
EP  - 509
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_5_a2/
LA  - ru
ID  - AL_2021_60_5_a2
ER  - 
%0 Journal Article
%A Ya. N. Nuzhin
%A A. V. Stepanov
%T Bruhat decomposition for carpet subgroups of Chevalley groups over fields
%J Algebra i logika
%D 2021
%P 497-509
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_5_a2/
%G ru
%F AL_2021_60_5_a2
Ya. N. Nuzhin; A. V. Stepanov. Bruhat decomposition for carpet subgroups of Chevalley groups over fields. Algebra i logika, Tome 60 (2021) no. 5, pp. 497-509. http://geodesic.mathdoc.fr/item/AL_2021_60_5_a2/

[1] V. M. Levchuk, “Parabolicheskie podgruppy nekotorykh $ABA$-grupp”, Matem. zametki, 31:4 (1982), 509–525 | Zbl

[2] Ya. N. Nuzhin, A. V. Stepanov, “Podgruppy grupp Shevalle tipov $B_l$ i $C_l$, soderzhaschie gruppu nad podkoltsom, i svyazannye s nimi kovry”, Algebra i analiz, 31:4 (2019), 198–224

[3] Ya. N. Nuzhin, “O gruppakh, zaklyuchennykh mezhdu gruppami lieva tipa nad razlichnymi polyami”, Algebra i logika, 22:5 (1983), 526–541 | Zbl

[4] Ya. N. Nuzhin, “Gruppy, lezhaschie mezhdu gruppami Shevalle tipa $B_l$, $C_l$, $F_4$, $G_2$ nad nesovershennymi polyami kharakteristiki 2 i 3”, Sib. matem. zh., 54:1 (2013), 157–162 | Zbl

[5] Z. I. Borevich, “O parabolicheskikh podgruppakh v lineinykh gruppakh nad polulokalnym koltsom”, Vestn. Leningr. un-ta. Ser. 1: Matem., Mekh., Astronom., 1976, no. 13, 16–24 | Zbl

[6] N. A. Vavilov, E. B. Plotkin, “Setevye podgruppy grupp Shevalle”, Koltsa i moduli. 2, Zap. nauchn. sem. LOMI, 94, Nauka, Leningrad. otd., L., 1979, 40–49 | Zbl

[7] N. A. Vavilov, E. B. Plotkin, “Setevye podgruppy grupp Shevalle. II. Razlozhenie Gaussa”, Moduli i algebraicheskie gruppy, Zap. nauchn. sem. LOMI, 114, Nauka, Leningrad. otd., L., 1982, 62–76 | Zbl

[8] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975

[9] R. W. Carter, Simple groups of Lie type, Pure Appl. Math., 28, John Wiley Sons, a Wiley Interscience Publ., London etc., 1972

[10] V. M. Levchuk, “O porozhdayuschikh mnozhestvakh kornevykh elementov grupp Shevalle nad polem”, Algebra i logika, 22:5 (1983), 504–517 | Zbl

[11] Ya. N. Nuzhin, “Razlozhenie Levi dlya kovrovykh podgrupp grupp Shevalle nad polem”, Algebra i logika, 55:5 (2016), 558–570 | Zbl

[12] V. A. Koibaev, S. K. Kuklina, A. O. Likhacheva, Ya. N. Nuzhin, “Podgruppy grupp Shevalle nad lokalno konechnym polem, opredelyaemye naborom additivnykh podgrupp”, Matem. zametki, 102:6 (2017), 857–865 | Zbl

[13] Dzh. Milnor, Vvedenie v algebraicheskuyu $K$-teoriyu, Mir, M., 1974