One-element rogers semilattices in the Ershov hierarchy
Algebra i logika, Tome 60 (2021) no. 4, pp. 433-437.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AL_2021_60_4_a3,
     author = {S. A. Badaev and B. S. Kalmurzaev and N. K. Mukash and M. Mustafa},
     title = {One-element rogers semilattices in the {Ershov} hierarchy},
     journal = {Algebra i logika},
     pages = {433--437},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_4_a3/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - B. S. Kalmurzaev
AU  - N. K. Mukash
AU  - M. Mustafa
TI  - One-element rogers semilattices in the Ershov hierarchy
JO  - Algebra i logika
PY  - 2021
SP  - 433
EP  - 437
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_4_a3/
LA  - ru
ID  - AL_2021_60_4_a3
ER  - 
%0 Journal Article
%A S. A. Badaev
%A B. S. Kalmurzaev
%A N. K. Mukash
%A M. Mustafa
%T One-element rogers semilattices in the Ershov hierarchy
%J Algebra i logika
%D 2021
%P 433-437
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_4_a3/
%G ru
%F AL_2021_60_4_a3
S. A. Badaev; B. S. Kalmurzaev; N. K. Mukash; M. Mustafa. One-element rogers semilattices in the Ershov hierarchy. Algebra i logika, Tome 60 (2021) no. 4, pp. 433-437. http://geodesic.mathdoc.fr/item/AL_2021_60_4_a3/

[1] Yu. L. Ershov, “Numeratsii semeistv obscherekursivnykh funktsii”, Sib. matem. zh., 8:5 (1967), 1015–1025

[2] A. V. Khutoretskii, “O moschnosti verkhnei polureshetki vychislimykh numeratsii”, Algebra i logika, 10:5 (1971), 561–569

[3] S. S. Goncharov, S. A. Badaev, “Semeistva s odnoelementnoi polureshetkoi Rodzhersa”, Algebra i logika, 37:1 (1998), 36–62 | Zbl

[4] S. S. Goncharov, A. Sorbi, “Obobschenno-vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | Zbl

[5] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977

[6] S. A. Badaev, S. S. Goncharov, “Theory of numberings: open problems”, Computability theory and its applications, Contemp. Math., 257, eds. P. Cholak et al., Am. Math. Soc., Providence, RI, 2000, 23–38 | DOI | Zbl

[7] A. I. Maltsev, “Konstruktivnye algebry. 1”, UMN, 16:3 (1961), 3–60 | Zbl

[8] S. A. Badaev, “O vychislimykh numeratsiyakh semeistv obscherekursivnykh funktsii”, Algebra i logika, 16:2 (1977), 129–148 | Zbl

[9] S. A. Badaev, A. A. Isakhov, “Nekotorye absolyutnye svoistva $A$-vychislimykh numeratsii”, Algebra i logika, 57:4 (2018), 426–447 | Zbl

[10] Yu. D. Korolkov, “O semeistvakh obscherekursivnykh funktsii s konechnym chislom predelnykh tochek”, Algebra i logika, 17:2 (1978), 169–177 | Zbl

[11] V. L. Selivanov, “Dve teoremy o vychislimykh numeratsiyakh”, Algebra i logika, 15:4 (1976), 470–484 | Zbl

[12] S. A. Badaev, Zh. T. Talasbaeva, “Computable numberings in the hierarchy of Ershov”, Mathematical logic in Asia, Proc. 9th Asian logic conf. (Novosibirsk, Russia, August 16-19, 2005), eds. S. S. Goncharov et al., World Scientific, NJ, 2006, 17–30 | DOI | Zbl

[13] I. Herbert, S. Jain, S. Lempp, M. Mustafa, F. Stephan, “Reductions between types of numberings”, Ann. Pure Appl. Logic, 170:12 (2019), 102716, 1–25 | DOI