$T_1$-separable numberings of subdirectly indecomposable algebras
Algebra i logika, Tome 60 (2021) no. 4, pp. 400-424

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a natural subclass of subdirectly indecomposable algebras all of whose Hausdorff numberings are negative. We also construct a $T_1$-separable nonnegative subdirectly indecomposable algebra with Artin congruence lattice.
Keywords: subdirect indecomposability, Artinianness, Noetherianness, computable and enumerable topologies, topological numbered algebras, translational precompleteness, positivity, negativity, effective separability.
@article{AL_2021_60_4_a1,
     author = {N. Kh. Kasymov and A. S. Morozov and I. A. Khodzhamuratova},
     title = {$T_1$-separable numberings of subdirectly indecomposable algebras},
     journal = {Algebra i logika},
     pages = {400--424},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_4_a1/}
}
TY  - JOUR
AU  - N. Kh. Kasymov
AU  - A. S. Morozov
AU  - I. A. Khodzhamuratova
TI  - $T_1$-separable numberings of subdirectly indecomposable algebras
JO  - Algebra i logika
PY  - 2021
SP  - 400
EP  - 424
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_4_a1/
LA  - ru
ID  - AL_2021_60_4_a1
ER  - 
%0 Journal Article
%A N. Kh. Kasymov
%A A. S. Morozov
%A I. A. Khodzhamuratova
%T $T_1$-separable numberings of subdirectly indecomposable algebras
%J Algebra i logika
%D 2021
%P 400-424
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_4_a1/
%G ru
%F AL_2021_60_4_a1
N. Kh. Kasymov; A. S. Morozov; I. A. Khodzhamuratova. $T_1$-separable numberings of subdirectly indecomposable algebras. Algebra i logika, Tome 60 (2021) no. 4, pp. 400-424. http://geodesic.mathdoc.fr/item/AL_2021_60_4_a1/