$T_1$-separable numberings of subdirectly indecomposable algebras
Algebra i logika, Tome 60 (2021) no. 4, pp. 400-424
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the existence of a natural subclass of subdirectly indecomposable algebras all of whose Hausdorff numberings are negative. We also construct a $T_1$-separable nonnegative subdirectly indecomposable algebra with Artin congruence lattice.
Keywords:
subdirect indecomposability, Artinianness, Noetherianness, computable and enumerable topologies, topological numbered algebras, translational precompleteness, positivity, negativity, effective separability.
@article{AL_2021_60_4_a1,
author = {N. Kh. Kasymov and A. S. Morozov and I. A. Khodzhamuratova},
title = {$T_1$-separable numberings of subdirectly indecomposable algebras},
journal = {Algebra i logika},
pages = {400--424},
publisher = {mathdoc},
volume = {60},
number = {4},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2021_60_4_a1/}
}
TY - JOUR AU - N. Kh. Kasymov AU - A. S. Morozov AU - I. A. Khodzhamuratova TI - $T_1$-separable numberings of subdirectly indecomposable algebras JO - Algebra i logika PY - 2021 SP - 400 EP - 424 VL - 60 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2021_60_4_a1/ LA - ru ID - AL_2021_60_4_a1 ER -
N. Kh. Kasymov; A. S. Morozov; I. A. Khodzhamuratova. $T_1$-separable numberings of subdirectly indecomposable algebras. Algebra i logika, Tome 60 (2021) no. 4, pp. 400-424. http://geodesic.mathdoc.fr/item/AL_2021_60_4_a1/