Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2021_60_4_a0, author = {A. B. Altaeva and B. Sh. Kulpeshov and S. V. Sudoplatov}, title = {Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories}, journal = {Algebra i logika}, pages = {369--399}, publisher = {mathdoc}, volume = {60}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/} }
TY - JOUR AU - A. B. Altaeva AU - B. Sh. Kulpeshov AU - S. V. Sudoplatov TI - Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories JO - Algebra i logika PY - 2021 SP - 369 EP - 399 VL - 60 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/ LA - ru ID - AL_2021_60_4_a0 ER -
%0 Journal Article %A A. B. Altaeva %A B. Sh. Kulpeshov %A S. V. Sudoplatov %T Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories %J Algebra i logika %D 2021 %P 369-399 %V 60 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/ %G ru %F AL_2021_60_4_a0
A. B. Altaeva; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories. Algebra i logika, Tome 60 (2021) no. 4, pp. 369-399. http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/
[1] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | Zbl
[2] M. A. Dickmann, “Elimination of quantifiers for ordered valuation rings”, J. Symb. Log., 52 (1987), 116–128 | DOI | Zbl
[3] L. van den Dries, A. H. Lewenberg, “$T$-convexity and tame extensions”, J. Symb. Log., 60:1 (1995), 74–102 | DOI | Zbl
[4] B. S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | Zbl
[5] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | Zbl
[6] K. Ikeda, A. Pillay, A. Tsuboi, “On theories having three countable models”, Math. Log. Q, 44:2 (1998), 161–166 | DOI | Zbl
[7] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, v. 1, Monografii NGTU, 2-e izd., Izd-vo NGTU, Novosibirsk, 2018
[8] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, v. 2, Monografii NGTU, 2-e izd., Izd-vo NGTU, Novosibirsk, 2018
[9] M. G. Peretyatkin, “Teorii s tremya schetnymi modelyami”, Algebra i logika, 19:2 (1980), 224–235
[10] B. Sh. Kulpeshov, S. V. Sudoplatov, “Lineino uporyadochennye teorii, blizkie k schetno kategorichnym”, Matem. zametki, 101:3 (2017), 413–424 | Zbl
[11] A. B. Altaeva, B. Sh. Kulpeshov, “Binarnost pochti $\omega$-kategorichnykh vpolne $o$-minimalnykh teorii”, Sib. matem. zh., 61:3 (2020), 484–498 | Zbl
[12] B. Sh. Kulpeshov, T. S. Mustafin, “Pochti $\omega$-kategorichnye slabo $o$-minimalnye teorii ranga vypuklosti 1”, Sib. matem. zh., 62:1 (2021), 65–81 | Zbl
[13] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 380–407 http://semr.math.nsc.ru/v11/p380-407.pdf | Zbl
[14] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Algebry raspredelenii binarnykh formul v schetno kategorichnykh slabo $o$-minimalnykh strukturakh”, Algebra i logika, 56:1 (2017), 20–54 | Zbl
[15] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul dlya vpolne $o$-minimalnykh teorii”, Algebra i logika, 57:6 (2018), 662–683
[16] K. A. Baikalova, D. Yu. Emelyanov, B. Sh. Kulpeshov, E. A. Palyutin, S. V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul teorii abelevykh grupp i ikh uporyadochennykh obogaschenii”, Izv. vuzov. Matem., 2018, no. 4, 3–15 | Zbl
[17] B. S. Baizhanov, “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and model theory, 2, eds. A. G. Pinus et al., izd-vo NGTU, Novosibirsk, 1999, 3–28
[18] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of $2$-formulas in weakly $o$-minimal theories”, Mathematical logic in Asia, Proc. the 9th Asian logic conf. (Novosibirsk, Russia, August 16-19, 2005), eds. S. S. Goncharov et al., World Scientific, Hackensack, NJ, 2006, 31–40 | DOI | Zbl
[19] B. Sh. Kulpeshov, “Schetno-kategorichnye vpolne $o$-minimalnye teorii”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 45–57 | Zbl
[20] V. V. Verbovskii, “O glubine funktsii slabo $o$-minimalnykh struktur i primer slabo $o$-minimalnoi struktury bez slabo $o$-minimalnoi teorii”, Proc. Inf. Control Problems Inst., 1996, 207–216
[21] V. V. Verbovskiy, “On formula depth of weakly $o$-minimal structures”, Algebra and model theory, eds. A. G. Pinus et al., izd-vo NGTU, Novosibirsk, 1997, 209–223
[22] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | Zbl
[23] B. Sh. Kulpeshov, “Gipoteza Voota dlya slabo $o$-minimalnykh teorii konechnogo ranga vypuklosti”, Izv. RAN, Ser. matem., 84:2 (2020), 126–151 | Zbl
[24] A. B. Altayeva, B. Sh. Kulpeshov, “On almost omega-categoricity of weakly $o$-minimal theories”, Sib. elektron. matem. izv., 18:1 (2021), 247–254 http://semr.math.nsc.ru/v18/n1/p247-254.pdf | Zbl