Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories
Algebra i logika, Tome 60 (2021) no. 4, pp. 369-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe distribution algebras of binary isolating formulas over $1$-type for almost $\omega$-categorical weakly $o$-minimal theories. It is proved that an isomorphism of these algebras for two $1$-types is characterized by the coincidence of binary convexity ranks, as well as by the simultaneous fulfillment of isolation, quasirationality or irrationality of the two types. A criterion is established for an algebra of formulas over a pair of not weakly orthogonal $1$-types to be generalized commutative for almost $\omega$-categorical weakly $o$-minimal theories.
Keywords: algebra of distributions of binary isolating formulas, $\omega$-categorical weakly $o$-minimal theory.
@article{AL_2021_60_4_a0,
     author = {A. B. Altaeva and B. Sh. Kulpeshov and S. V. Sudoplatov},
     title = {Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories},
     journal = {Algebra i logika},
     pages = {369--399},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/}
}
TY  - JOUR
AU  - A. B. Altaeva
AU  - B. Sh. Kulpeshov
AU  - S. V. Sudoplatov
TI  - Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories
JO  - Algebra i logika
PY  - 2021
SP  - 369
EP  - 399
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/
LA  - ru
ID  - AL_2021_60_4_a0
ER  - 
%0 Journal Article
%A A. B. Altaeva
%A B. Sh. Kulpeshov
%A S. V. Sudoplatov
%T Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories
%J Algebra i logika
%D 2021
%P 369-399
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/
%G ru
%F AL_2021_60_4_a0
A. B. Altaeva; B. Sh. Kulpeshov; S. V. Sudoplatov. Algebras of distributions of binary isolating formulas for almost $\omega$-categorical weakly $o$-minimal theories. Algebra i logika, Tome 60 (2021) no. 4, pp. 369-399. http://geodesic.mathdoc.fr/item/AL_2021_60_4_a0/

[1] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | Zbl

[2] M. A. Dickmann, “Elimination of quantifiers for ordered valuation rings”, J. Symb. Log., 52 (1987), 116–128 | DOI | Zbl

[3] L. van den Dries, A. H. Lewenberg, “$T$-convexity and tame extensions”, J. Symb. Log., 60:1 (1995), 74–102 | DOI | Zbl

[4] B. S. Baizhanov, “Expansion of a model of a weakly $o$-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | Zbl

[5] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | Zbl

[6] K. Ikeda, A. Pillay, A. Tsuboi, “On theories having three countable models”, Math. Log. Q, 44:2 (1998), 161–166 | DOI | Zbl

[7] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, v. 1, Monografii NGTU, 2-e izd., Izd-vo NGTU, Novosibirsk, 2018

[8] S. V. Sudoplatov, Klassifikatsiya schetnykh modelei polnykh teorii, v. 2, Monografii NGTU, 2-e izd., Izd-vo NGTU, Novosibirsk, 2018

[9] M. G. Peretyatkin, “Teorii s tremya schetnymi modelyami”, Algebra i logika, 19:2 (1980), 224–235

[10] B. Sh. Kulpeshov, S. V. Sudoplatov, “Lineino uporyadochennye teorii, blizkie k schetno kategorichnym”, Matem. zametki, 101:3 (2017), 413–424 | Zbl

[11] A. B. Altaeva, B. Sh. Kulpeshov, “Binarnost pochti $\omega$-kategorichnykh vpolne $o$-minimalnykh teorii”, Sib. matem. zh., 61:3 (2020), 484–498 | Zbl

[12] B. Sh. Kulpeshov, T. S. Mustafin, “Pochti $\omega$-kategorichnye slabo $o$-minimalnye teorii ranga vypuklosti 1”, Sib. matem. zh., 62:1 (2021), 65–81 | Zbl

[13] I. V. Shulepov, S. V. Sudoplatov, “Algebras of distributions for isolating formulas of a complete theory”, Sib. elektron. matem. izv., 11 (2014), 380–407 http://semr.math.nsc.ru/v11/p380-407.pdf | Zbl

[14] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Algebry raspredelenii binarnykh formul v schetno kategorichnykh slabo $o$-minimalnykh strukturakh”, Algebra i logika, 56:1 (2017), 20–54 | Zbl

[15] D. Yu. Emelyanov, B. Sh. Kulpeshov, S. V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul dlya vpolne $o$-minimalnykh teorii”, Algebra i logika, 57:6 (2018), 662–683

[16] K. A. Baikalova, D. Yu. Emelyanov, B. Sh. Kulpeshov, E. A. Palyutin, S. V. Sudoplatov, “Ob algebrakh raspredelenii binarnykh izoliruyuschikh formul teorii abelevykh grupp i ikh uporyadochennykh obogaschenii”, Izv. vuzov. Matem., 2018, no. 4, 3–15 | Zbl

[17] B. S. Baizhanov, “Orthogonality of one-types in weakly $o$-minimal theories”, Algebra and model theory, 2, eds. A. G. Pinus et al., izd-vo NGTU, Novosibirsk, 1999, 3–28

[18] B. S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of $2$-formulas in weakly $o$-minimal theories”, Mathematical logic in Asia, Proc. the 9th Asian logic conf. (Novosibirsk, Russia, August 16-19, 2005), eds. S. S. Goncharov et al., World Scientific, Hackensack, NJ, 2006, 31–40 | DOI | Zbl

[19] B. Sh. Kulpeshov, “Schetno-kategorichnye vpolne $o$-minimalnye teorii”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 45–57 | Zbl

[20] V. V. Verbovskii, “O glubine funktsii slabo $o$-minimalnykh struktur i primer slabo $o$-minimalnoi struktury bez slabo $o$-minimalnoi teorii”, Proc. Inf. Control Problems Inst., 1996, 207–216

[21] V. V. Verbovskiy, “On formula depth of weakly $o$-minimal structures”, Algebra and model theory, eds. A. G. Pinus et al., izd-vo NGTU, Novosibirsk, 1997, 209–223

[22] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly $o$-minimal theories”, Ann. Pure Appl. Logic, 145:3 (2007), 354–367 | DOI | Zbl

[23] B. Sh. Kulpeshov, “Gipoteza Voota dlya slabo $o$-minimalnykh teorii konechnogo ranga vypuklosti”, Izv. RAN, Ser. matem., 84:2 (2020), 126–151 | Zbl

[24] A. B. Altayeva, B. Sh. Kulpeshov, “On almost omega-categoricity of weakly $o$-minimal theories”, Sib. elektron. matem. izv., 18:1 (2021), 247–254 http://semr.math.nsc.ru/v18/n1/p247-254.pdf | Zbl