The degree of decidable categoricity of a model with infinite solutions for complete formulas
Algebra i logika, Tome 60 (2021) no. 3, pp. 303-312

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a decidable prime model in which the degree of a set of complete formulas is equal to $\mathbf{0}'$, infinitely many tuples of elements comply with every complete formula, and the decidable categoricity spectrum coincides with the set of all $PA$-degrees.
Keywords: computable model, decidable model, computable categoricity, autostability relative to strong constructivizations, degree of decidable categoricity, decidable categoricity spectrum, $PA$-degree.
@article{AL_2021_60_3_a3,
     author = {S. S. Goncharov and M. I. Marchuk},
     title = {The degree of decidable categoricity of a model with infinite solutions for complete formulas},
     journal = {Algebra i logika},
     pages = {303--312},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_3_a3/}
}
TY  - JOUR
AU  - S. S. Goncharov
AU  - M. I. Marchuk
TI  - The degree of decidable categoricity of a model with infinite solutions for complete formulas
JO  - Algebra i logika
PY  - 2021
SP  - 303
EP  - 312
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_3_a3/
LA  - ru
ID  - AL_2021_60_3_a3
ER  - 
%0 Journal Article
%A S. S. Goncharov
%A M. I. Marchuk
%T The degree of decidable categoricity of a model with infinite solutions for complete formulas
%J Algebra i logika
%D 2021
%P 303-312
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_3_a3/
%G ru
%F AL_2021_60_3_a3
S. S. Goncharov; M. I. Marchuk. The degree of decidable categoricity of a model with infinite solutions for complete formulas. Algebra i logika, Tome 60 (2021) no. 3, pp. 303-312. http://geodesic.mathdoc.fr/item/AL_2021_60_3_a3/