The degree of decidable categoricity of a model with infinite solutions for complete formulas
Algebra i logika, Tome 60 (2021) no. 3, pp. 303-312
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a decidable prime model in which the degree of a set of complete formulas is equal to $\mathbf{0}'$, infinitely many tuples of elements comply with every complete formula, and the decidable categoricity spectrum coincides with the set of all $PA$-degrees.
Keywords:
computable model, decidable model, computable categoricity, autostability relative to strong constructivizations, degree of decidable categoricity, decidable categoricity spectrum, $PA$-degree.
@article{AL_2021_60_3_a3,
author = {S. S. Goncharov and M. I. Marchuk},
title = {The degree of decidable categoricity of a model with infinite solutions for complete formulas},
journal = {Algebra i logika},
pages = {303--312},
publisher = {mathdoc},
volume = {60},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2021_60_3_a3/}
}
TY - JOUR AU - S. S. Goncharov AU - M. I. Marchuk TI - The degree of decidable categoricity of a model with infinite solutions for complete formulas JO - Algebra i logika PY - 2021 SP - 303 EP - 312 VL - 60 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2021_60_3_a3/ LA - ru ID - AL_2021_60_3_a3 ER -
S. S. Goncharov; M. I. Marchuk. The degree of decidable categoricity of a model with infinite solutions for complete formulas. Algebra i logika, Tome 60 (2021) no. 3, pp. 303-312. http://geodesic.mathdoc.fr/item/AL_2021_60_3_a3/