Infinite groups containing a proper Hughes subgroup $H_3(G)$
Algebra i logika, Tome 60 (2021) no. 3, pp. 298-302
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider groups in which $H_3(G)$ is both nontrivial and proper. In particular, it is proved that in such a group, $|G:H_3(G)|=3$.
Keywords:
Hughes subgroup, Engel group, group of exponent $3$.
@article{AL_2021_60_3_a2,
author = {Wenbin Guo and D. V. Lytkina and V. D. Mazurov},
title = {Infinite groups containing a proper {Hughes} subgroup $H_3(G)$},
journal = {Algebra i logika},
pages = {298--302},
publisher = {mathdoc},
volume = {60},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2021_60_3_a2/}
}
Wenbin Guo; D. V. Lytkina; V. D. Mazurov. Infinite groups containing a proper Hughes subgroup $H_3(G)$. Algebra i logika, Tome 60 (2021) no. 3, pp. 298-302. http://geodesic.mathdoc.fr/item/AL_2021_60_3_a2/