Computable embeddings for pairs of linear orders
Algebra i logika, Tome 60 (2021) no. 3, pp. 251-285

Voir la notice de l'article provenant de la source Math-Net.Ru

We study computable embeddings for pairs of structures, i.e., for classes containing precisely two nonisomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a nontrivial degree structure. Our main result shows that $\{\omega \cdot k,\omega^\star \cdot k\}$ is computably embeddable in $\{\omega \cdot t, \omega^\star \cdot t\}$ iff $k$ divides $t$.
Keywords: computable embedding, enumeration operator, computable linear order.
@article{AL_2021_60_3_a0,
     author = {N. A. Bazhenov and H. Ganchev and S. Vatev},
     title = {Computable embeddings for pairs of linear orders},
     journal = {Algebra i logika},
     pages = {251--285},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_3_a0/}
}
TY  - JOUR
AU  - N. A. Bazhenov
AU  - H. Ganchev
AU  - S. Vatev
TI  - Computable embeddings for pairs of linear orders
JO  - Algebra i logika
PY  - 2021
SP  - 251
EP  - 285
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_3_a0/
LA  - ru
ID  - AL_2021_60_3_a0
ER  - 
%0 Journal Article
%A N. A. Bazhenov
%A H. Ganchev
%A S. Vatev
%T Computable embeddings for pairs of linear orders
%J Algebra i logika
%D 2021
%P 251-285
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_3_a0/
%G ru
%F AL_2021_60_3_a0
N. A. Bazhenov; H. Ganchev; S. Vatev. Computable embeddings for pairs of linear orders. Algebra i logika, Tome 60 (2021) no. 3, pp. 251-285. http://geodesic.mathdoc.fr/item/AL_2021_60_3_a0/