Coordinate groups of irreducible algebraic sets over divisible metabelian $r$-groups
Algebra i logika, Tome 60 (2021) no. 2, pp. 176-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe coordinate groups of generalized rigid metabelian groups in which, whenever a group is noncommutative, the second factor of a rigid series is a divisible $R$-module over an appropriate integral domain $R$.
Keywords: coordinate group, generalized rigid metabelian group, rigid series.
@article{AL_2021_60_2_a4,
     author = {N. S. Romanovskii},
     title = {Coordinate groups of irreducible algebraic sets over divisible metabelian $r$-groups},
     journal = {Algebra i logika},
     pages = {176--194},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2021_60_2_a4/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Coordinate groups of irreducible algebraic sets over divisible metabelian $r$-groups
JO  - Algebra i logika
PY  - 2021
SP  - 176
EP  - 194
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2021_60_2_a4/
LA  - ru
ID  - AL_2021_60_2_a4
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Coordinate groups of irreducible algebraic sets over divisible metabelian $r$-groups
%J Algebra i logika
%D 2021
%P 176-194
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2021_60_2_a4/
%G ru
%F AL_2021_60_2_a4
N. S. Romanovskii. Coordinate groups of irreducible algebraic sets over divisible metabelian $r$-groups. Algebra i logika, Tome 60 (2021) no. 2, pp. 176-194. http://geodesic.mathdoc.fr/item/AL_2021_60_2_a4/

[1] N. S. Romanovskii, “Obobschenno zhestkie gruppy: opredelenie, bazisnye fakty, problemy”, Sib. matem. zh., 59:4 (2018), 891–896 | MR | Zbl

[2] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhestkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR | Zbl

[3] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[4] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[5] N. S. Romanovskii, “Obobschenno zhestkie metabelevy gruppy”, Sib. matem. zh., 60:1 (2019), 194–200 | MR | Zbl

[6] N. S. Romanovskii, “Neterovost po uravneniyam metabelevykh $r$-grupp”, Sib. matem. zh., 61:1 (2020), 194–200 | MR | Zbl

[7] N. S. Romanovskii, “Ob universalnykh teoriyakh metabelevykh obobschenno zhestkikh grupp”, Sib. matem. zh., 61:5 (2020), 1101–1107 | MR | Zbl